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CHAPTER

TWO

WATER POLLUTION PROCESSES AND
QUALITY INDICATORS

2-1 HYDROLOGIC PHENOMENA

The study of the dynamics of river flow constitutes perhaps the most classical
chapter of the hydrological sciences (see, for example, Gray, 1970). This is largely
due to the importance of these studies in flood control and water management
in general, and partly to the possibility of describing the phenomenon of surface
runoff in a reasonably simple way, as shown in Sec. 3-3.

In principle one should consider surface runoff as a part ol the so-called
water cycle which starts with evaporation, continues with formation of clouds,
precipitation, interception by vegetation, infiltration, and percolation and terminates
with overland flow, interflow, and groundwater flow generating surface runoff as
shown in Fig. 2-1-1. Some of these phenomena, such as groundwater dynamics,
are characterized by very smooth variations over time, while some others, such as
overland flow, are almost immediate responses to precipitation. Spatial scale is
also very diverse and changes of state occur in many points ol the water cycle.
Nevertheless, hydrologists often simplify the description of such a complex system
by isolating the main mechanisms involved and by neglecting some interactions
between them. A typical result of this approach is the block diagram of Fig. 2-1-2
which represents a still general conceptual model of the entire water cycle.
Simplified conceptual models for describing particular aspects ol the water cycle
can be obtained from this general model by further neglecting some of the inter-
actions between the blocks. For example, if river low must be determined from
rainfall data, then evaporation from ground and water surfaces together with
interception can be neglected provided that the time period of the investigation
is sufficiently short. The model obtained in this way is a so-called rainfali-runoff
model and can be used to estimate the peak flow rures and (heir times of

17
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Flow rate

Time of
occurrence

Figure 2-1-3 The runoff hydrograph corresponding to a given rainfall event.

occurrence corresponding to given rainfall events as shown in Fig. 2-1-3 for a
particular runoff hydrograph. The main properties of this phenomenon are the
delay between the rainfall and runoff peaks due to transport time, the smoothing
of the rainfall variations due to the diversity among the paths of water particles,
and the Jong tail of the runoff curve due to groundwater flow.

Another problem extensively studied by hydrologists is the propagation of
the flood wave in a river streich, One way of Jooking at the problem is as follows:
suppose a very high variation of flow rate occurs at time to at the upstream
end of the river stretch and assume that this variation takes place only during
a very short period of time. Subsequent observations at downstream stations
show thai the wave propagation along the river can be described by a sequence
of bell-shaped curves as shown in Fig. 2-1-4. The time of occurrence of the peaks
increases With the distance of the station from the upstream end and the bell
curves are sinoother for downstream stations. The area under each curve is the

Flow rate variation

Figure 2-1-4 Time variations of flow rate in three given siations due to an impulse of flow rate al the
upstream end of the river.
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variation of the total volume (or mass) of the water in the river and must
therefore be constant if there are no losses in the stretch; thus, the spreading
out of the curves implies that the peaks decrease downstream. Another way of
looking at the problem is to sample over time the variations of flow rate, or better,
of cross-sectional area along the stretch. Again a sequence of bell curves is
obtained, as shown in Fig. 2-1-5, and the area underlying the curves is constant
since it represents, as before, the total volume of water characterizing the input
disturbance. Moreover, quantitative observations show that the bell curves are
skewed (steeper at the front of the wave), that the wave propagation velocity is
greater than stream velocity, and that the difference between the two velocities
increases with the depth of the river.

The relevance of these phenomena in river pollution modeling and control
is still relatively limited since for most studies the hydrologic variables can be
assumed to be constant in time (this is not the case in estuaries, lakes, and seas).
Of course, some relationships between hydrological variables are needed. For
example, it is often important to know how the stream velocily is related fo the
flow rate in steady state conditions. This function, which is increasing and concave,
allows one to determine the traveling time of the pollutants between different
points on the river when the flow rale is known. Moreover, a hydrologic
phenomenon which is very important for river pollution studies is dispersion,
which is due to the random variations of the velocity in the river (turbulence).
Suspended particles and/or dissolved compounds are transferred downstream
along different paths so that, on average, pollutants are dispersed in all directions.
Although this effect could correctly be explained only by higher dimensional
models (models in which there are two ot three spatial coordinates), the following
will show how dispersion along the axis of the river can be taken into account,
together with molecular diffusion, by using simple one-dimensional models.

2-2 THERMAL PHENOMENA

An important variable for all river quality considerations is water temperature.
Its importance is mainly due to the temperature dependence of many processes
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through which other quality indicators, like oxygen concentration or pollutant
concentration, are determined (these influences will be discussed in the next
section). On the other hand, temperature has also to be considered as a quality
indicator per se, which affects the kind of fish in the river, the temperature of
the drinking water produced from the river water, fog frequency along the river,
flow rate, etc. Hence, modeling and contro! of river quality comprises modeling
and control of river temperature, and a prerequisite for this is the understanding
of the processes which affect river temperature (see, for example, Krenkel and
Parker, 1969 ; Jobson and Yotsukura, 1972; Heidt, 1975).

These processes are shown symbolically in Fig. 2-2-1, and can be divided
into four groups: energy exchange with the atmosphere, energy exchange with
the river-bed, internal heat production, and anthropogenic heat addition or
subtraction. The radiative energy transport through the water surface consists of
three components: shori-wave solar radiation, long-wave atmospheric radiation,
and long-wave radiation of the river. The short-wave solar radiation is that part
of the solar radiation which is not absorbed by the atmosphere; it is mainly
visible light. The incident energy depends on the atmospheric conditions (e.g.,
cloudiness) and on the orography of the valley. Part of the incident visible light
is reflected, the rest is converted into heat within the river. The proportion reflected
depends on the incidence angle, and is usually less than 10 percent. The long-

L ~ane- Reflected short wave radiation
hn~e- Reflected long wave radiation

|—— Evaporation
——eConduction

o} — Waste heat production
—ernndnnn Short wave solar radiation
wwandarns Long wave radiation

O b~ Long wave atmospheric radiation

O

Degradation Friction

Conduction ~=—
Electricily s»———
production

Figure 2-2-1 Heat transfer mechanisms of a river.
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wave atmospheric radiation is emitted by the atmosphere above the river (tempera-
ture radiation). Its intensity depends on air temperature and humidity. Since the
absorption coefficient of air for infrared radiation is low, temperature and humidity
in an atmospheric layer of several hundred meters thickness are relevant for this
component of the heat balance. About 3 percent of the long-wave atmospheric
radiation is reflected. The long-wave radiation of the water is emitted only by
a very thin surface layer, because the absorption coefficient of water for infrared
radiation is high. Hence, the surface temperature is the variable which determines
the radiative heat loss of the river.

Energy may also be exchanged between the river and the atmosphere through
heat conduction (exchange of sensible heat). Pure heat conduction, ie, heat
transport through molecular or atomic collisions, is, however, important only at
the air-water interface. Within the two media heat is transported mainly through
convection, which occurs in the form of both large scale movement {eg.,
advection} and turbulent mixing (eddy diffusion, see also Sec. 2-1). The convection
in air is primarily forced by the wind. Therefore, the Alux of sensible heat through
the water surface depends not only on the air and water temperature, but also
on wind velocity. Even if no wind is blowing, turbulent mixing is the main
transport mechanism for sensible heat in air, because the river low generates air
turbulence through the frictional contact with air. Under particular circumstances
buoyancy forces may be major sources of convection, for example, if the water
temperature is much higher than the air temperature. The convection within the
river is, of course, a function of the river flow rate,

The evaporation of water from the river also represents a transport of heat,
because the change in the state of aggregation requires energy. The heat abstracted
from the water through evaporation does not correspond to an increase of air
temperature, but occurs as heat only when the water vapor condenses again; that
is why one speaks of a flux of latent heat from the water to the air. The net
cvaporation rate is the sum of microscopic evaporation and condensation pro-
cesses. Thus, the net flux of latent heat obviously depends on the water vapor
pressure in the air and on the surface temperature of the water. (The latter
determines the saturated vapor pressure of the water.) The dispersion of the
evaporated water is governed by the same processes as the dispersion of the
sensible heat. Therefore, the dependence of the fatent heat flux on wind velocity
can be expected to be the same as that of sensible heat. In rare cases the net
evaporation is negative, i.e., water vapor condenses at the river surface. The
sensible heat carried away by the evaporated water can be neglected. Similarly,
the addition of heat through rain, which is not shown in Fig. 2-2-1, is usually
negligible.

The heat exchange with the river bed is determined by the heat conductivity
of the soil. Since this is very small and also the temperature gradients which
occur are moderate, the heat exchange with the river bed can usually also be
neglected.

The internal heat production in the river is mainly due to two effects:
conversion of potential energy of the water into frictional heat and biochemical
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conversion of chemical energy into heat. The latter plays a minor role even in
heavily polluted rivers.

The direct impact of human activities on river temperature consists mainly
in the discharge of wasre hear and in the abstraction of energy, which otherwise
would be converted into heat, through hydropower plants. Waslte heat is a by-
product of numerous industrial processes, and the easiest way to dispose of it is
by discharging it into rivers {see Sec. 7-2). The main waste heat sources are electric
power plants; other sources include chemical plants which have 10 be cooled,
river navigation, or domestic sewage. The abstraction of energy through hydro-
power plants can often be neglected.

IT waste heat is discharged into a river, and one follows the water as it flows
downstream, one observes an extra flux of energy from the river to the atmosphere
which tends to establish the natural river temperature, i.e., the temperature which
the river would have if there were no waste heat sources. This extra flux is usually
desirable. It can be enhanced by choosing an appropriate outlet structure which
influences the way in which the waste heat is admixed to the river. Figure 2-2-2
shows three admixture modes to aim for. The extra heat Aux is certainly highest
with mode (a), where one is attempling to distribute the heated water quickly
over the river surface. But this option has the drawback of hindering the diffusion
of oxygen into the water (see Sec. 2-3). The difference between the extra heat
fluxes of solution (b} and (c) is small. If rapid mixture is achieved, the heated
surface is large but the temperature increase is small; with slow transverse mixing
the opposite is the case.

Finally, it should be mentioned that the natural temperature of a river may
be changed drastically through hydraulic engineering constructions, which change
the heat convection within the river. An extreme example is the construction of a
big reservoir with the outlet at the bottom of the dam; then the river temperature
immediately downstream of the dam is practically constant throughout the year,
while before the construction there may have been large annuval and diurnal
variations.

Summarizing the discussion of the various heat transfer processes, onie can

(a)

Figure 2-2-2 Admixiure modes for wasle
heat:

(a} heated surface layer

(b} rapid mixing

() slow transverse mixing

{The density of the dots represents the
temperature distribution over the river
cross section).

(¢}
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state that for both the natural river temperature and the additiona! heat fux due
toanartificial temperature increase the most relevant quantities are the convection
characteristics of the river and the meteorological parameters which affect the
energy transfer through the water surface. The importance of the meteorological
paramelers has led to the concept of the equilibrium temperature, which is defined
as the temperature which a completely mixed water column has if the net heat
flux through its surface is zero; the column is assumed to be thermally insulated
laterally and at the bottom. The equilibrium temperature is determined uniquely
by the meteorological conditions ; it may be lower or higher than the air tempera-
ture. Roughly speaking, one can say that at each moment the energy transfer
processes through the river surface tend to establish this temperature level.

2-3 BIOCHEMICAL AND SELF-PURIFICATION
PHENOMENA

Most river quality problems are generated by matter which is discharged into
the river as a consequence of human activities. Many of these problems are
related to the interactions between the discharged matter and river organisms,
such as bacteria, rooted plants, and fish ; these interactions are now discussed.

A Laboratory Experiment

The impact of a pollutant discharge on river biology can be studied qualitatively
through the lollowing laboratory experiment. A sample of river waler containing
a representative biological community (biocenosis) is placed in a reaction tank.
A given amount of pollutants at a given instant of time is added, and the resultant
processes in the sample are observed. The processes observed correspond to the
processes going on in & volume of river water which is Rowing downstream; the
addition of the pollutant in the experiment corresponds to a single wastewater
effluent on the river. While the observations along the river would be disturbed
by other effluents and varying hydrology and temperature, in the laboralory
experiment described the biochemical processes can be studied under well-defined,
constant conditions. That is why observations from such an experiment, which are
shown in Fig. 2-3-1 (Miinch, 1970), are used as a guide-line for the lollowing
discussion. Peptone, which is a mixture of protein fragments, was added at ¢ = 0.
Hence the “pollutant™ was made up of amino acids, which contain considerable
amounts ol organically bound nitrogen. The development of both the biocenosis
and “several chemical characteristics was observed. The groups of organisms
present other than the bacteria all belong 1o the subkingdom of pratozeq, ie.,
only unicellular organisms were observed in this experiment. Each group comprises
a great variety of species; as an example, Fig. 2-3-2 shows the disaggregation
of the class Ciliata into single species. Detailed descriptions of the various
organisms may be found in textbooks on water biology, e.g., in Liebmann (1962).

Looking at the curves of Figs. 2-3-1 and 2-3-2 il is apparent that peptone
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Figure 2-3-1 Changes induced in a natural waler sample through the addition of peptone at
t =0 (aftler Miinch, 1970, T = 10°C. The inorganic nitrogen compounds are represenied through
their nitrogen content).

stimulates the growth of the species present in the sample. The energy source
for this so-called succession must be the electrochemical energy of the peptone,
since no other energy source is available (the experiment was run in the dark).
The appearance of inorganic forms of nitrogen indeed indicates that peptone has
been decomposed. The sequential occurrence of ammonium {(NHJ ), nitrite (NO7),
and nitrate (NQ3), and the subsequent decline of ammonium and nitrite suggest
that the primary decomposition product is ammonium, which is then oxidized to
nitrate (via nitrite). The concentrations of the dissolved gases carbon dioxide
(CO,) and oxygen (O,) are at saturation level at the beginning, i.e., the diffusion
currents of the gas molecules through the water surface are equal in both directions.
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Figure 2-3-2 Development of species of Ciliata during the experiment shown in Fig. 2-3-1 (after
Miinch, 1970).

Hence, the oxygen and carbon dioxide curves in Fig. 2-3-1 indicate that the
processes induced by the peptone consume oxygen and liberate carbon dioxide.
The curves result from the superposition of these consumption and liberation
processes, respeclively, and the diffusion, which tends to re-establish the initial
equilibrium. Around the third week complete oxygen depletion is observed. The
occurrence of hydrogen sulfide (H,S), which is toxic to most of the organisms,
seems to be related to this depletion.

On further inspection of the metabolic activities of the organisms it can be
seen that at first the peptone added serves as nutrient for certain bacterial species.
The bacteria decompose the peptone and use the energy released for growth,
multiplication, and maintenance of their lile function. They excrete certain

organic or inorganic substances, which they cannot use any more. The most.

relevant of these substances is ammonium. Ammonium is used by some other
bacterial species, the nitrifiers, as an energy source, the ammonium itsel{ being
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oxidized (nitrification). The organic bacterial excrements are used by saprozoic
flagellates, to which the groups of small flageliates, Chilomonas, and Entosiphon
in Fig. 2-3-1 belong. These flagellates also decompose the organic matter released
after the death of bacteria. The living bacteria and flagellates serve as prey for
many ciliates, and these ciliates are eaten by raptorial ciliates (e.g., Litonotus lamella
is a raptorial ciliate, see Fig. 2-3-2). The ciliates also excrete various substances
which may be utilized by flagellates or bacteria. Thus, there exists a complex
system of nutritional interrelations between the species, which is called food web
or (less aptly) food chain. The population dynamics in Figs. 2-3-1 and 2-3-2 are
mainly determined by these interrelations and by competition between species for
food.

With all feeding activities chemical energy of the food compounds is
set free and used for synthesis of biomass or maintenance of life functions.
Hence, part of the released energy is bound again as chemical energy, the rest
being converted into heat. The food compounds are thereby oxidized, which
means that oxygen is used and organic compounds are converted mainly into
carbon dioxide and water. (If no free oxygen is available (anaerobic conditions)
oxygen from sulfate may be used by some bacteria, resulting in the formation of
hydrogen sulfide ; see Fig. 2-3-1.) I there is not enough food available, organisms
oxidize part of their own matter in order to obtain energy for the maintenance
of their life functions until they die of hunger or turn into certain dormant and
resistant states, like bacterial spores. (The energy consumption for maintenance
of life functions, like movement or replenishment of spontancously degenerated
protein molecules, is called endogenous respiration.) Hence, afler a very long time
the biomass in the reaction tank will be as small as at the beginning and the
overall result of the experiment will be conversion of peptone into mainly walter,
carbon dioxide, nitrate, and heat. The water, which may have been fairly turbid
during the experiment, becomes as clear as at the beginning. That is why the
processes described are designated biochemical self-purification (Wuhrmann,
1972). The ability of rivers to purify themselves is an extremely imporant factor
in almost all river quality considerations and plays a major role throughout this
book. The importance of sell-purification for river quality is illustrated in Fig.
2.3-3 in which the actual organic pollution of the Rhine river, measured as
Chemical Oxygen Demand (COD) concentration (see Sec. 3-5) is compared with
the pollution which would result if the pollutants discharged into the river section
shown just accumulated (see Sec. 5-3). The concentration at the downstream end
would already be of the same order of magnitude as the concentration in domestic
wastewater. Since biochemical self-purification is such an important factor, the
most important aspects of it are now discussed in more detail. It will also be
necessary to work out the differences between our illustrative experiment and
an actual river.

Degradation of Pollutants by Bacteria

The first and most important step in the self-purification process is the degradation
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of the originally discharged pollutants by bacteria (and lower order fungi).
Degradation denoles any chemical change of a pollutant which releases electro-
chemical energy. Bacterial degradation is the most important step because the
proportion of the energy of the pollutants which is dissipated is obviously greatest
at this level. (Assuming the same efficiency for all energy conversions connected
with feeding, and assuming also a strict chain-like structure of the food web, the
chemical energy is reduced from link to link of the food chain in a geometric
progression.)

The processes related to bacterial degradation are schematically shown in
Fig. 2-3-4, in which the energy donors (pollutants) are assumed to be organic
molecules. The degradation processes are usually long chains of reactions which
are catalyzed by enzymes, i.e., degradation takes place practically only if certain
highly specific proteins or proteids (enzymes) are present. These enzymes are not
changed by the chemical reactions they catalyze. The energy yielding processes
during degradation are transfers of electrons such that the potential energy of
the electrons is lowered. In the reactions most important for energy deliberation,
the electrons are carried by hydrogen {dehydrogenation of the energy donor). The
energy released is partly bound again through the formation ol adenosine tri-
phosphate (ATP) from adenosine di-phosphate (ADP) and inorganic phosphorus.
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Figure 2-3-4 Schemaiic representation of bacierial enzyme action.

New bacterial mass is synthesized also by chains of enzymatic reactions, The
energy reguired for this is taken from ATP which is thereby converted into ADP.
The building malerials for the biomass synthesis {carbon, hydrogen, and small
amounts of various other elements) are partly taken from the environment, but
also [ragments of the pollutants may be integrated directly into the new biomass.
The rate at which new bacterial mass is formed is usuatly limited by the amount
of energy which can be gained through degradation rather than by the availability
of building materials.

The enzymes mentioned so far are all endoenzymes, since they catalyze
reactions within the cell. There are particular enzymes, called permeases, by which
the transport through the cell wall (or, more precisely, through the cytoplasmic
membrane) is achieved (diffusion plays no significant role because the transport
through the cell wall has to be accomplished against a concentration gradient).
If the pollutant molecules are very large {e.g., starch, cellulose, protein), a direct
transport into the cell is impossible. In this case, the molecules are decomposed
outside the cell into fragments which are small enough. These decompositions
are catalyzed by so-called exoenzymes. They can be attached to the cell walls as
well as be released into the surrounding medium. They differ [rom the endo-
enzymes by their small molecular weight (10-10° as opposed to 10°-10® of the
endoenzymes) and by their extremely low cystin and cystein coment (Pollock,
1962).

The ability of a bacterium to utilize a pollutant, i.e., to synthesize enzymes
which catalyze the degradation of the pollutani, is genetically determined. That is
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why only those compounds which have been present for a long time in nature
are biologically degradable. Compounds which have appeared during the last few
decades through the development ol chemical technology, cannot ofien be de-
graded or can only be partially degraded; among those, for example, are the
chlorinated hydrocarbons (see, for instance, Eichelberger and Lichienberg, 1971).
Only part of the enzymes, the so-called constituent enzymes, is synthesized
independently of the available nutrients. The other enzymes are inducable, that is,
the genetically fixed ability to synthesize them is only realized when the specific
substrale (or sometimes other structurally similar compounds) are present.

Four major groups of bacteria, which are defined by the two binary notions
antotrophic-heterotraphic and aerebic-anaerobic, may be distinguished according
to thekind of degradation and synthesis processes. A few energy yielding processes
which are representative for these groups are shown in Fig. 2-3-5. The distinction
between autotrophic and heterotrophic is made according to whether the carbon
for synthesis of biomass is ol organic or inorganic origin. Autotrophic bacteria
gel their carbon from carbonic acid or its salts. By and large, this distinction
coincides with the distinction as to whether the energy source is inorganic or
organic, respectively. The distinction aerobic-anaerobic is based on whether or
not oxygen is the final electron acceptor in the degradation process. The two
reaction examples given in Fig. 2-3-5 for autotrophic, aerobic organisms are the
oxidation of sullur and ammonium, which can be performed, for example, by the
genera Beggiatoa and Nitrosomonas, respectively. The latter belong to the
nitrifying bacteria already mentioned. The autotrophic, anaerobic example is also
a sulfur oxidation ; since no lree oxygen is available nitrate is stripped of oxygen,
hence the process is called denitrification. Thiobacillus denitrificans is an example
of a bacterium whiich is able to denitrify. The two examples in the heterotrophic—
aerobic quadrant are the processes performed by baker’s yeast and vinegar
producing bacteria, respectively. The first example given for heterotrophic-
anaerobic organisms is the well-known alcoholic fermentation ; the second one,
which can be performed by the genus Desulfovibrio, reduces sulfate. A reaction
similar to this must have occurred around the third week of the experiment

Autotrophic Heterotrophic
(C from CO, or H,CO,) |(C from organic compounds)
25 + 2H,0 + 30, CeH 0, + 60,
=2H,50, =6C0, + 6H,0
Aerobic
- 2NH,0OH + 30, C,H,0H + O,
~2HNO, + 4H,0 ~CH,COOH + 1,0
58 + 6HNO, + 2H,CO, CgH;;0,~2C,H,0H+2CO,
Anaerobic | - 5H,50, + 2C0O, + 3N, [2C,H.0, + 3H,50,
~3H,CO+3H,0+3H,5+3C0O,)

Figure 2-3-5 Basic types of microbial metabolism and typical energy yielding reactions.
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shown in Fig. 2-3-1. Although any bacterial species is adapted to one of the
quadrants in Fig. 2-3-5, in many cases bacteria may survive or even reproduce
in other quadrants. ’

The most important type of bacterial metabolism for river quality problems
is heterotrophy under aerobic conditions. Anaerobic conditions are avoided when-
ever possible, because usually unpleasant metabolic by-products, like hydrogen
sulfide, occur. And autotrophy is of minor importance because most of the
anthropogenic waste discharged into rivers (in terms of electrochemical energy)
is organic material. The only important autotrophic bacteria are the nitrifiers,
because ammonium is 2 common component of wastewater as well as a common
end product of heterotrophic bacterial metabolism. The growth rate of the
nitrifiers is, however, quite low, as can be seen from Fig. 2-3-1. Therefore, they
play an important part only in slow flowing (e.g. impounded) or overgrown
rivers: in overgrown bodies of water the nitrifiers may settle on water plants;
if there are no water plants and the river velocity is high, the flow time is too
shdrt for the development of a high nitrifier population (Liebmann, 1962;
Wezernak and Gannon, 1970; Woll, 1971 ; Goering, 1972). Moreover, the growth
of the nitrifiers is inhibited by numerous pollutants, so that the influence of nitri-
fication on the sell-purification process is often negligible.

The number of different organic compounds which may be found in rivers is
immense, and is rapidly increasing as chemical technology develops. Nevertheless,
most of these compounds can be decomposed by microorganisms. Because of
the great variety of pollutants the bacteria found in rivers are not specialists but
show great flexibility in their use ol pollutants (see, lor example, Hopton, 1970).
Most of them belong to the genera Bacillus, Aerobacter, Pseudomonas, Flave-
bacterium, Escherichia, Achromobacter, Alcaligenes, Micrococcus, Sphaerotilus, and
Chromobacterium (Liebmann, 1962 ; Hopton, 1970; Frobisher, 1974).

The many degradation pathways which the river bacteria are able to follow
are so arranged that with progressing degradation more and more pathways
coincide. This is the natural result of evolution, which minimizes the expenditures
on enzyme production,

If different bacterial species are able to wutilize a certain substance the
degradation pathways are in most cases the same. This means, a bacterial
community composed of those species behaves similarly to a homogeneous
population as far as the degradation of that substance is concerned (see, for
example, Gaudy, 1962; Wilderer, 1969). Therelore, the river bacteria, which are
so versatile, act to a good approximation like a homogeneous bacterial population
against the organic potlulants. This may even be true if just a few species are
able to decompose a substance, because often metabolic intermediates are available
for the other species. This is especially the case with the end products of reactions
catalyzed by excenzymes. Similarly, the small flagellates living on organic bacterial
excrements may be lcoked upon as part of the bacterial population as far as
self-purification is concerned, because their population dynamics follow so closely
the bacterial population dynamics (see Fig. 2-3-1).

The kinetics of degradation of a certain substance is ofien specifically
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influenced by other nutrients or by nondegradable compounds. This influence
can consist of the repression of the production of an enzyme. Thus, numerous
inducible enzymes, especially exoenzymes, are only formed when other more
easily degradable nutrients have been used up (Pollock, 1962 ; Stumm-Zollinger,
1966). Also the activity of enzymes already present may be regulated. This kind
of regulation can be achieved through the binding of the regulator molecule to
the active site of the enzyme molecule, which is then no longer able lo catalyze
{(competitive inhibition, sce, for example, Laidler, 1958): in this case the regulator
molecule and the substrate molecule are usually structurally simitar. [The special
case of compelitive inhibition in which regulator and substrate molecule are the
same occurs if the metabolic pathways of two substrates merge and the slowest
(i.e., rate determining) reaction is in the common part of the pathways (Wilderer,
1969).]

In many cases, the regulator molecules are attached to some other part of
the enzyme molecule and activate or inhibit it by changing the form of the
molecule {allosteric inhibition, Laidler, 1958); in these cases there is, in general,
no structural similarily between substrate and regulator molecule. Measurement
results of a laboratory self-purification experiment in which the degradation of
one substance (sorbitol) is inhibited allosterically by another will be shown in
Fig. 3-5-7. In competitive inhibition the enzyme activity depends upon the ratio
of the concentrations of substrate and regulator ; if the substrate concentration is
high enough the inhibition can be overcome. On the other hand, in allosteric
regulation the enzyme activity depends only on the regulator concentration.
Allosteric inhibitions and activations also play an important role in the endogenic
regulation of metabolism: the end product of a metabolic pathway acts as an
allosteric regulator of the first reaction (feedback). Many substances which occur
in wastewaters influence the bacterial metabolism so seriously, even at relatively
small concentrations, that bacteria die. Heavy metals are an example of such toxic
materials.

Great differences in mobility exist within the realm of bacteria. There are
attached types as well as various types of flagella. For self-purification con-
siderations, however, the question whether a bacterial species is sessil or motile
is less important than the question how many bacteria are actually attached to
the river bottom {benthic} and how many are suspended in the flowing water
(planctonic). (The latter category also comprises sessil bacteria, which may be
attached 10 suspended particles or ripped off from the river bottom.) The
importance of this distinction, which will be elaborated in the following chapters,
can be easily seen. If the conditions for benthic bacteria are favorable downstream
of a wastewater inlet {¢.g., water weed on which the bacteria may settle) the
bacterial degradation activity can be very intense immediately downstream of the
inlet. If, however, only planctonic bacteria can grow, and the river upstream of
the inlet is quite clean, the maximum of the bacterial degradation may be far
downstream because of the time needed to adapt to the wastewater (produce the
appropriate enzymes} and to reproduce.
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The Role of Higher Order Consumers and of Phototrophs in
Self-Purification

Through the bacterial degradation the electrochemical energy of the pollutants
has been converted into electrochemical energy of bacterial mass with an efficiency
which usually lies between 10 and 60 percent (Servizi and Bogan, 1964; Burkhead
and McKinney, 1969; McCarty, 1972). Thus the sel-purification cannot be
considered finished even if the bacteria have removed all pollutants. The newly
created bacterial mass, which must still be considered a kind of pollution (which
can be fltered off or sedimented out, however) would decline only very slowly
due to endogenous respiration; the death rate would become significant only
relatively late. But usually self-purification proceeds considerably faster because
the bacteria are consumed by protozoa, in particular by ciliates.

The role of protozoa in the self-purification process was greatly disputed up
to a few years ago, but after several convincing experiments their importance is
now an established fact (Javornicky and Prokesova, 1963; Bick, 1964 Bhatla and
Gaudy, 1965 ; Straskrabovi-Proke3ova and Legner, 1966; Miinch, 1970; Gaudy,
1972). As an example Fig. 2-3-6 shows the dynamics of bacterial density and
oxygen consumgption in a laboratory experiment with a river water sample with,
and without, the addition of protozoa (Yavornicky and Prokesova, 1963). One
can see that the accumulated oxygen consumption, which can be considered a
measure of the pollutants energy which has been converted into heat, is much
larger in the first case. The bacterial density is thereby clearly smaller. (After the
first day bacterial and protozoan densities are of the order of magnitude of those
measured in the river. The smaller bacterial density at the beginning resulted from
the fact that in eliminating the natural protozoa many bacteria were inevitably
eliminated as well.) Whether the additional oxygen consumption is due solely to
the digestion of the bacteria by protozoa, has not yet been clarified. Straskrabova-
Prokesova and Legner (1966) suppose, on the basis of their measurements, that
the protozoa secrete a substance which enhances the degradation activity of the
bacteria. The reason [or the high additional oxygen consumption could also be
that protozoan grazing, which reduces the competition among the bacterial species,
favors the bacteria with high degradation activity more than the others. However,
the importance of the protozoa lies mainly in the fact that they control the
bacterial density through grazing, and only this aspect is included in the con-
stderations which follow. For example, protozoan grazing should be the main
reason for the reduction of the bacterial concentration in the Rhine river between
Mainz and Kéln which is observed during summer. Figure 2-3-7a shows the
bacterial concentration along a section of the Rhine river during summer,
calculated as the geometric mean of the measurements taken by the Rhine Water
Works during the six summer months of 1967 (ARW, 1969}). (Similar values were
measured for other years.) Figure 2-3-7b gives the corresponding curves for the
six winter months. The opposite behavior between Mainz and Ko6ln in winter
{when the self-purification processes are slowed down, see page 39) shows that
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Figure 2-3-6 Influence of protozoa on bacterial density in a laboratory experiment with river water.
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Figore 2-3-7 Measured values of bacterial density in the Rhine river: {a) in summer (h) in winter.

the decline in summer is certainly not caused by differences in the measuring
technique. (The plate count technique was used, so one may suspect that the
shape of the curve in Fig. 2-3-7a is determined by slight differences in the culture
media which are used in the different measurement points.)

The growth rates of bacteria in rivers may vary widely due to the great
differences in degradability of their food. For prolozoa leeding on bacteria this
source of variability of growth rates is much less important, because the protozoan
food has essentially aiways the same composition.

As already mentioned above, the protozoa feeding on bacteria are in turn
eaien by higher organisms. Beside the raptorial ciliates, which were involved in
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the experiment of Fig. 2-3-1, primitive worms {phylum Nemathelminthes) and fish
are the major predators. Other prey-predator interrelations follow up to the
raptorial fish, which lie at the top of the food web.

As with the bacteria, so with higher order consumers benthic and planctonic
organisms must be distinguished, and again among the planctonic organisms
there may be sessil forms, which are living on suspended matter or which have
been ripped off from the river boltom. Fish can in some cases be assumed to
live stationary, i.e, they act like benthic organisms. For other species of fish it
might be necessary, however, to take migration into account.

The part of the original electrochemical energy which the higher order
consumers dissipate becomes smaller and smaller as one ascends the food web.
Nevertheless, the influence of the higher order consumers upoen the dynamics of
self-purification could be considerable, because they reduce the consumers of
lower orders. This, however, is not normally the case, for two reasons. Firstly,
the growth rates decrease toward the top of the food web. Therefore those
higher consumers which are stream-borne do not have enough time to reach the
high population density which could be supported by the nutritional base—the
pollutants. Secondly, organisms become, in general, more and more exacling
toward the top of the food web, so that many of them cannot survive or breed
in heavily polluted water.

Unlike the laboratory experiment described at the beginning, in real rivers the
electrochemical energy on which the food web is based, stems not only from
the pollutants discharged into the river, but also from phororrophic organisms,
i.e., organisms which are able to use sunlight as an energy source in building
new biomass. The net effect of the phototrophs is practically the inverse of
degradation; carbon dioxide, water, and some other substances are combined to
energy-tich organic matter, and oxygen is liberated. This organism group conlains,
beside a few bacteria and many Nagellates, algae and higher aquatic plants.
Although the phototrophs can use sunlight as an energy source, they ofien use,
either indispensably or facultatively, organic substances. In some cases, growth is
possible even in the dark (Round, 1965). The inorganic and organic substances
which the phototrophs take up are to a large extent by-products of the degradation
processes described above (carbon dioxide, nitrate or ammonium, phosphates,
etc.). Thus, the pollutants in fact act as lertilizers for the aquatic Nora. This effect,
which causes eutrophication in lakes, may lead to similar phenomena in slowly
flowing rivers, e.g., algal blooms or huge amounts of dying algae in autumn.

In producing new organic matter the phototrophs counteract the self
purification. On the other hand, they may also enhance sell-purification. The
oxygen released by photosynthesis can prevent anaerobic conditions, which cause
the self-purification to proceed much more slowly than under aerobic conditions.
However, if the light intensity is not sufficient {(during night or in winter) the
phototrophs represent an additional oxygen demand because of their endogenous
respiration. Figure 2-3-8 gives an example ol how the activity of phototrophs
influences the oxygen balance of a river. It shows the diurnal variations of oxygen
concentration in the Rhine river at Gernsheim during a bright summer day
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Figure 2-3-8 Diurnal variations of oxygen concentration in the Rhine river al Gernsheim during a
bright summer day {after Schulze-Rettmer and Béhnke, 1973).

{Schulze-Rettmer and Bdhnke, 1973). It can be seen that the oxygen production
through photosynthesis is so intense that oversaturation even occurs. The
measurements were taken, however, near the river bank, where the influence of
littoral plants and of almost stagnant river branches can be felt. The varations
ofthe cross-sectional mean value are much smaller {see Sec. 5-3). Another beneficial
effect on self-purification is that phototrophs provide surfaces for bacleria to
attach to, so that the bacterial degradation activity can be very intensive im-
mediately downstream of a wastewater inflow (see page 32). This effect is parti-
cularly important for the slowly growing nitrifiers. It should also be mentioned
that some species of algae produce compounds which are toxic to higher animals,
and which, therefore, disturb drinking water production in particular. These species
grow preferably at high temperatures (> 30°C).

Like the chemotrophic organisms, the phototrophic organisms may be benthic
or planctonic; the higher plants are without exception stationary. Since the
growth rate of most phototrophs is quite small (compared with bacteria, for
example), the species which live planctonic are of importance only in very slowly
Rowing (e.g., impounded) rivers. Phototrophs do not play a major role in
deep rivers, because the light intensity in greater depths is not sufficient for their
growth; this may be true even for relatively shallow rivers, if they are turbid
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enough. In general, phototrophs are more exacting than lower order consumers,
therefore they cannot grow in heavily polluted rivers. Hence, there are many
cases in which the influence of phototrophs on sefl-purification may be neglected.

Phototrophs serve as food for many animal species, some of which may be
able to utilize other kinds of food as well {omnivores), while others live exclusively
on phototrophs (herbivores). The most important group among the latter is the
class Crustacea (mainly phyllopods and copepods, see Liebmann, 1962). The
organisms feeding on phototrophs are subject to the same predatory processes as
the organisms mentioned above.

All self-purification processes described up to now are summarized in Fig.
2-3-9 in the form of a food web. The arrows indicate flows of material. The
arrows at the compartments “O;" and “excrements, detritus, etc.” which do not
end at another compartment symbolize oxygen consumption and waste matter
production, respectively, by all living organisms. The slanted lines indicate the
environment of the river. It should be appreciated that Fig. 2-3-9 gives only a
very approximate picture ol reality. The substances and organisms shown are
highly aggregated, and only the most important ones are depicted. Nevertheless,
it is believed that this picture can be used as a starting point for the second step
in conceptualization (see Sec. 1-3), namely formulation of quantitative, mathe-
matical models of self-purification. This will be done in the following chapters.
The distinction between benthic and planctonic variables, which has been omitted
from Fig. 2-3-9, will also be made.

Each compartment in Fig. 2-3-9 represents one aspect of what is called warer
quality. Too lew fish may be perceived as a river quality problem as well as too
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Figure 2-3-9 Food web of the sell-purification process.
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many bacteria, to give only two examples. Thus, water quality ought 10 be
measured through a quantitative specification of all the compartments in Fig.
2-3-9 (and possibly physical and chemical characteristics, see, for example, Sec.
2-2). This is essentiafly the way in which Kolkwitz and Marsson (1902) defined
water quality when they introduced their saprobial system (see also Liebmann,
1962). They defined different categories of water quality through specification of
typical biocenoses. While this way of measuring water quality is appropriate for
descriptive purposes, il is less well suited for anticipatory investigations, because
the impact of a poliutant on the whole river biocenosis cannot be evaluated
quantitatively. Therelore, water quality is now usually defined through a few
clementary variables which characterize the living conditions for the aquatic
organisms (Stehfest, 1972). Hence, the quality indicators most [requently used are
temperature, oxygen concentration, and pollutant concentration. For the latier,
very global measures may be used (see Sec. 3-5) as well as measures which
comprise single compounds {e.g., toxins).

The Influence of Physical and Chemical Agents on Self-Purification

The physical river parameiers which are most important for sell-purification are
temperature and flow rate, which have been discussed in the previous sections.
If the temperature increases all chemical reactions, and hence all metabolic
conversions, are accelerated, unless the temperature is so high that essential
compounds of the organisms (e.g., enzymes) denature. If in the experiment of
Fig. 2-3-1, for example, the temperature is increased from 10°C 1o 20°C, the
curves of Fig. 2-3-10 are observed (Miinch, 1970). Il one compares Figs. 2-3-1
and 2-3-10 one can see that self-purification proceeds about twice as fast at 20°C
as at 10°C. A1 20°C the oxygen curve has two clearly distinct minima, the second
one obviously being due to nitrification. Some types of organisms occur which
have not been observed at 10°C, even multicellular organisms {e.g., Rotatoria).
They were probably also present in the 10°C experiment, but could not reproduce
up to an observable population size during the measurement time. In general,
not only the growth rates but also the relative abundance of the various species
is changed if temperature changes. Each species is adapted to a particular
temperature, and, il the actual temperature deviates from this, other species may
become superior in the competition for food,

The temperature dependence of the photosynthesis activity of aquatic plants
can be much weaker than that of degradation processes il the light intensity is
low. The reason is that at low light intensity the limiting reaction is a photo-
chemical one, which should not be influenced by moderate temperature variations.
The endogenous respiration of the phototrophs, however, depends on temperature
as strongly as with the other organisms. This implies that at low light intensities
the net growth rate of phototrophs may increase if the temperature is lowered
(Round, 1965). The oxygen saturation concentration decreases il the temperature
increases, while the decay rate of a given deviation [rom saturation increases.

It is not clear a priori whether all temperature dependencies mentioned so
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Figure 2-3.10 Laboratory self-purification experiment of Fig. 2-3-} with increased lemperature
{afer Minch, 1970, T = 20°C).

far result in an increase or a decrease of oxygen concentration if temperature
changes. And, in fact, the river quality models described in the following chapters
are such that the oxygen concentration may increase or decrease with decreasing
temperature, depending, for example, on the location (see Secs. 4-1 and 5-3}.

The main effects of a variation in flow rate are the variations of the flow
time between the pollution sources and the variation of the dilution ratio. Again,
it is not obvious whether the sum of these eflects is a reduction or an increase

of the pollutant conceatration. Usually a reduction of the pollutant concentration

is observed if the flow rate increases; only at very low fow rates, where river
velocity increases very quickly with flow rate, may the opposile be observed. A
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third consequence of flow rate variations, which seems to be less important, is
that the ecological interactions within the food web change because the turbulence
changes. It is obvious, for example, that the efficiency of bacterial degradation
processes which involve exoenzymes drops if turbulence increases.

No general statement can be made about the variation of oxygen concen-
tration with low rate. Even the influence of low rate on physical reaeration alone
cannot be derived easily, because two consequences have to be considered which
compensate each other to a certain extent. Il low rate increases, diffusion of
oxygen from air into water is enhanced because of higher turbulence. On the
other hand, the oxygen which diffuses through a certain surface area has to be
distributed over a greater volume, because the depth has increased.

There are many factors other than temperature and flow rate, which are
largely determined externally, and which influence the sell-purification processes
in rivers. Several of them, such as light intensity and quality of river-bed, have
already been mentioned. Another one is the pH value (see Fig. 2-3-1). Its main
impact consists in shifting some important chemical equilibria. The equilibrium
between ammonia (NH;) and ammonium (NHJ ), for example, is shified toward
ammonia il the pH-value is increased ; then ammonia may escape and less in-
organically bound nitrogen is available (e.g., for phototrophs). But in real rivers
this and numerous other possible effects are of minor relevance and are therefore
not discussed in detail here.

2-4 OTHER PHENOMENA

There are several processes beside the ones described in Secs. 2-1-2-3 which may
be relevant to one or other aspect of river quality. The most important among
them are sedimentation and resuspension, which are obviously closely related to
the hydrologic phenomena discussed in Sec. 2-1. If turbulence in a river is weak,
which usually happens when river velocity is low, suspended particles may settle.
The river water becomes cleaner, so we may speak ol physical self~purification of
the river. Substances which can be degraded biochemically as described in Sec.
2-3 may be degraded within the sediment as well, although the biological species
involved are different. Anaerobic conditions are much more likely to occur within
the bottom deposits, however, because the oxygen consumed can be replenished
only through molecular diffusion, while within the water body turbulent mixing
is the dominant oxygen transport mechanism. This implies that biochemical self-
purification within the sediments usually proceeds at a slower rate than in the
stream above it. Sedimentation of degradable suspended matter has been observed
to be relevant only lor (cross-sectional mean) velocities smatler than about 0.5 m/s
{see, for example, Velz, 1958 and Benoit, 1971). If sedimentation occurred in a
river and the low rate of the river increased considerably, the sediments may be
stirred up again. Through this resuspension, large amounts of biodegradable
malter can be released into the water instantaneously, which may cause a serious
deterioration of the oxygen concentration. The resuspended matter is usually even
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morse easily degradable than the material which has settled out before, due (o the
slow anaerobic degradation processes within the sediments.

Another phenomenon important for river quality is sorption, i.e., the binding
of dissolved molecules or jons to solid particles (see, for example, Berioit, 1971).
Obviously, this process in conjunction with sedimentation also acts as physical
self-purification. The binding forces for sorption are van der Waals® forces in the
case ol molecules (adsorprion) and electrostatic forces in the case of ions. When
an ion is bound to a particle, another ion, which is less strongly bound, may be
displaced into solution (ion exchange). lons of heavy metals, for example, usually
displace the common ions of the alkali and alkaline earth metals (like sodium
and calcium); this is an important fact for water quality considerations since many
heavy metals are extremely toxic (Férstner and Miiller, 1974). The particles on
which sorption occurs may be either organic or inorganic. The larger the total
solid surface, the greater becomes the purification effect, i.e., small particle size
enhances this kind of self-purification.

A third, though less important, aspect of physical self-purification is floccu-
lation, ie., destabilization of colloids and formation of flocs which may
subsequently settle (see, for example, Singley, 1971). Flocculation is enhanced by
high turbulence, and by neutralizing with ions the repulsive charges on the
colloidal particles.

There are also purely chemical phenomena which may be said to contribute
to sell-purification of rivers, the main one being precipitation. The insoluble
compounds may be formed through both polar and covalent bonds. Precipitation,
like ion exchange, is particularly important for the removal of heavy metals.
Under the usual chemical conditions in rivers, hydroxides, carbonates, and sulfides
of heavy metals have very low solubility, and the formation of these compounds
in natural rivers is fairly likely (Férstner and Miitler, 1974). The numerous other
chemical processes which may possibly influence river water quality, for example,
the escape of ammonia (NH,) in the case of increase in the pH value (see page
41), are not believed to be important in rivers.
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Figure 2-4-1 Removal of dissolved lead and zinc along a section of the Ruhr river {alter Koppe, 1973},
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No general statements can be made about the relative importance of the
phenomena described in this section so far, because they are heavily dependent
on the physical and chemical characteristics of the river. The main factors are
turbulence, temperature, and pH value. And il one or more of these characteristics
change, pollutants which have already been fixed in the sediments may bc re-
dissolved or resuspended. Heavy metals, for example, which have been precipitated
may easily be dissolved when the pH value is lowered. .

An example of how the phenomena described affect the concentration of
dissolved heavy metals (zinc and lead) along a river is shown in Fig. 2-4-1 (Koppe,
1973). The measurements were taken on the Ruhr river in West Germany. They
show that heavy metals may be fixed 1o suspended or settled solids almost com-
pletely over relatively short distances (lead), but in other cases removal may be
much slower (zinc). If a heavy meta)l is removed quickly the enrichment of that
metal in the sediments may yield concentrations which are comparable to
concentrations in mineable ores. o

Finally, it should be mentioned that all the phenomena described in this
section are utilized in both water and wastewater treatment plants (see Sec. 7-1).

2-5 INTERRELATIONSHIPS BETWEEN THE PHENOMENA

All the phenomena presented in the preceding sections will be described in the
next chapter by means ol differential equations. The resulting set of relationships
(the river quality model) may be partitioned into three subsets (namely, the
hydrologic, the thermal, and the biochemical submodels), coupled together as

Hydrologic Thermal
submodel submodel
Biochemical
submode!
(a)
Hydrologic Thermal
submode!l submodel
Biochemiclal Figure 2-5-1 Thelinksamong the three submodels:
LLET {a) in the general case
(b (b} when minor effects are neglected.

]
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shown in Fig, 2-5-1a. The state variables of the hydrologic submodels influence
all other variables, since all phenomena take place in the fluid medium. The water
temperature strongly influences the biochemical processes. It also has an impact
on hydrology because of evaporation and buoyancy. The biochemical processes
!which are understood o also comprise the processes described in Sec. 2-4) may
influence the hydrology through sedimentation or growth of water weed, for
example. They may also affect the temperature through heat production or changes
of the heat transfer characteristics. In most practical cases, however, the influences
of the biochemical processes on hydrology and temperature, and of the temperature
on hydrology may be neglected. Then the relations between the submodels are
the ones indicated in Fig. 2-5-1b. One can see that the three groups of equations
can be solved in cascade, starting from the hydrologic submodel and ending with
the biochemical one.
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CHAPTER

~ THREE
STRUCTURE OF THE MODELS

3-1 BALANCE EQUATIONS

Afer having described the relevant hydrologic, thermal, and biochemical pheno-
mena and identified the corresponding variables, the dynamic laws governing the
evolution of the variables can now be derived. These laws are all based on the
conservation principles for mass, momentum, and energy, regardless ol which of
the phenomena described in Chapter 2 is dealt with. In other words, the water
quality model results from bookkeeping processes for all the relevant variables.
Accordingly, the development of model equations follows the same scheme for all
variables. This scheme is discussed now, while Secs. 3-3-3-5 are devoted o the
more specific problems of deriving the model equations.

Densities and Velocities in a Fluid

There are several points of view rom which one may look at a Nuid. One
possibility for instance, is the molecular approach, which considers the Nuid to be
a huge number of molecules moving around and colliding with each other in the
vacuum. The approach best suited to river quality considerations, however, is the
continuum approach. Following this approach each point in space is associaled
with the average value of the property considered (for example, energy, momen-
tum, bacterial mass) over a small reference volume. The advantage of using
the continuum approach is that a heterogeneous multicomponent (luid can be
described as being composed of different continua, interacting with each other
and occupying the same position in space at the same instant of time, so that
properties of any of these continua may be assigned 1o every point of the space
(interpenetruting contimuut).

F )
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. In order to clarify this idea, consider a multicomponent Nluid, made up of N
different components. Let dM denote the mass contained in a small volume dV,
and_ dm, the mass of the i-th component in the same volume (the subscript will bé
oml.tted later on, if there is no possibility of confusion). The reference volume
d V‘IS assumed to be large compared with the mean distance between the particles
which are to be described as continuum (e.g., molecules, bacteria); but it has to
be small compared with the spatial scale of the phenomena being studied. Then
the mass density (or concentration} p, of the i-th component is defined as

o= 2N
dv s
and
ul R odm, dM
:le'-;gggi’.:_l’:p

is the bulk mass density.

These notions may be generalized 1o other characteristics of the fluid which
are proportit_mal to the volume, like momentum or energy {extensive quantities as
opposed to intensive quantities like temperature): for any extensive quantity the
concentration , which is an intensive quantity, may be defined as
T dv
so that the amount IT; of the extensive property contained in any volume V is
given by

|

n|=jy ﬂ]dV E (3-!,[)

The average velocity o of the particles of the i-th component in a reference
volume dV may, in general, be different from those of the other components. Then,
i.lccording to the continuum viewpoint, it is necessary to consider, for any point
in space, a set of velocities {ay)f= 1. The bulk velocity € may then be defined as

N
iy N

)

N
= P
|Z: ]

whic!a, under n_urrnal circumstances, is practically equal to the water velocity. The
physical meaning of £2 is momentum per unit of mass, so that pQ is the bulk
momentum density of the luid.

] =

Three-Dimensional Balance Equation

In a multicomponent fluid consider an arbitrary volume V, invariable in time,
and the total amount IT of an exiensive property of a given component (e.g., mass
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of a given pollutant) contained at time ¢ within volume V. As is well known, the
rate of change of quantity I is given by

§E= -.[ nends + J‘ {dav (3-1-2)
ot s v

where S is the surface surrounding V, nis the unit normal vector directed outward
from the surface S, and { is the rate of production of the exiensive property per
unit volume. The first term on the right hand side of Eq. {3-1-2) is the flow of the
property out of the volume V, while the second term is the total amount of
property generated within the volume. Recalling Eq. (3-1-1) and using Gauss’
theorem, Eq. (3-1-2) can be written in the form

on .
.[y [E + div(nw) — C]dV= 0

2+ diviror =1 (-13)
since the volume V is arbitrary. Equation (3-1-3) is the formal expression of the
general conservation principle.

Equation (3-1-3) describes the characteristics of any component of the fluid at
a microscopic time scale. However, one is usually not interested in the very rapid
fluctuations of densities and velocities which are due to the Brownian movement
of the particles and to the turbulent nature of the river flow. Thus, a simplification
may be introduced by averaging all the variables over a representative time
interval At, which is sufficiently large to filter out the high frequency variations,
but sufficiently small not to damp the low frequency variations one is interested in.

More precisely, let the average of a variable x over At be denoted by

1
{(x)= ELxdr

Then, by definition, for any density z

from which it follows

n=¢Cn) +n° (3-1-4a)
and for the velocity of any component
o= {w) + 0’ (3-1-4b)

where z° and w? are the random fluctuations around the mean. Inserting Eq. (3-1-4)
into Eq. (3-1-3), taking the averages, and using

on
(ﬂo) = (70> =0

(@ = {a)n®) = {a’m> =0

and
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we obtain

i]

—<;—> + div ({r>{@)) + div ({n%0®)) = {{) (3-1-5)
The velocity @ can be considered the sum of two terms, the bulk velocity £ and
the diffusive {or migration) velocity (@ ~ £2),

=14 (w— Q)

ie., any movement is seen as a migration with respect to the fluid superimposed
on the bulk fluid advection. For simplicity of notation, new symbols are used for
the following average values

p=<n)
vy = (2>
u={w - 1)
I=<0
Then Eq. (3-1-5) can finally be written as
g—f +divivp) +diviup) — 2 =1 {3-1-6a)
where
P = —[div ({R°°)) + div ({(@ — 0)°1°)] (3-1-6b)

Equation (3-1-6) is the general three-dimensional balunce equation. )
The rol of the different terms in Eq. (3-1-6) is easily identified a5 follows:

div (vp) represents tlic advection by the bulk fluid motion. The flow vp introduces
a coupling with the hydrologic submadel if p is a variable of the thermal or
biochemical submodel.

div (up) represents the so-called migration term. The flux up is remarkably different
from zero only for nondissolved matter. This term may express the sedimen-
tation movements of particulate matter, the rising of bubble gases towards
the surface, or the movements due to “the free will” of animals. Usually it is
expressed as a function of the particle characteristics by means of empirical
formulae.

& represents the total dispersion and diffusion term which is due partly to the
random variations of the bulk velocity field (turbulent dispersion term
div((Q2°2°))) and partly to the random movements at molecular level
{molecular diffusion term div ({(w — ©)°x%))).

Mixing through molecular diffusion is usually small compared to turbulent
mixing, so that the second term of & can be neglected. The turbulent dis-
persion term isusually expressed by (see, for example, Sayre, 1972; Holly, 1975;
and Yotsukura and Sayre, 1976)
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2 =divDgradp (3-1-7)
with
D, 0 0
D=|0 D, 0 (3-1-8)
0 0 D

1 represents the chemical, biochemical, and ecological interactions. This term, in
general, introduces a coupling between the density p and other interacting
densities.

When Eq. (3-1-7) is used to express dispersion and a dissolved component
is considered (u = 0), Eq. (3-1-6) reduces to

QE
ot

Initial and boundary conditions must be given in order to solve Eqs. (3-1-6)
or (3-1-9). The boundary conditions are expressed as funclions of the production
of the property under consideration outside the Nuid {e.g., exchange of oxygen
with atmosphere at the surface, oxygen release by macrophyles on the bottom,
BOD discharge on river banks, or BOD sedimentation on the bottom). Not only
the boundary conditions for p and v must be given but also the existence of
physical frontiers for the fiuid must be expressed using boundary conditions. Of
course, these frontiers are idealized, i.e., most of the intricacy of the real frontiers
is smoothed out. For instance, given a fixed coordinate system x, y, z, with 2 = §
and z=h being the equations of the air-water interface and of the bottom,
respectively, it is assumed that these bowdary surfaces satisly the equations (see
Nihoul, 1975)

+divivp) —divDgradp=1 (3-1-9)

a& 714 o

—_ 2= 3-1-
a +U‘ﬂx+v"ﬂy_u' at (4 (3-1-10a)
i i o) U, atz=~h {3-1-10b})

E'i‘l!,(:,-;'i'ﬂ,a—y—_—

Equation (3-1-10) expresses the “mode!” boundaries as surfaces of an idealized
fluid moving with the average bulk velocity v. An equation analogous to Eq. (3-1-10)

must also be used to express the existence of the lumteral boundaries {the river
banks). :

Two- and One-Dimensional Balance Equations

In rivers, estuaries, and lakes the variations of concentrations in all directions may
be important. However, the direct solution of a system of coupled three-
dimensional balance equations is beyond the capacity of present-day computers,
so that a reduction to the two- or one-dimensional case is necessary. Fortunately,
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in many situations, variations in one direction are less important than in the others.
In rivers, for example, the variations along the vertical line can usually be
neglected. This is related to the fact that the width of rivers is much greater than
the depth. In these cases one can reduce the dimensionality of the model by
averaging the equations over that direction. Even in the most recently developed
three-dimensional models of estuaries and lakes (see for instance, Leendertsee et
al., 1973, or Chen and Orlob, 1975), the water body is cut horizontally into slices
and the equations averaged over the slices are solved slice by slice. Thus, the
reduction of three-dimensional balance equations to two or one dimension on the
basis of certain simplifying assumptions will now be discussed. An important
remark must be made beforehand. A reduction in the dimensionality of the
madel also curtails the frontiers of the system. If, for instance, one averages over
depth, the resulting system has only lateral boundaries, while the surface bound-
aries have been incorporated in the new balance equation.

Neglecting molecular diffusion and making assumptions {3-1-7, 3-1-8) & may
be written in the form

0 dp
= Vv — el
2 = V(D Vip) + 32 D, (az)

where

is the two-dimensional gradient operator (i and j are the unit vectors in the x

and y direclions} and
D, 0
n=[5 5]

The z-axis of the coordinate system is assumed to be vertical, while the x-axis is
pointing in the longitudinal direction. Let v, denote the horizontal component of
the velocity v

¥y = b0+ v,j

and assume the horizontal migration term equal 1o zero (this is always the case
except for organisms which can move independently of the stream). Then Eq. (3-1-6)

can be writlen as

op 0 oy=1-2 2 f’_P.) i
4 Valpw) + 7 (v = 1 = 52 () + ValDyVop) + - (D. =) 3-1-11)

Moreover, let § and ¥ denote the depth-averaged concentration and velocity
respectively, ie,

5 ed g :d
p_ﬁJ.AP z \'—H "V F4
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where H = £ — h is the river depth. Then concentration and velocity components
in each point can be expressed as the mean value plus a fluctuation:

p=F+p
V)= i]‘ + ih
These expressions may now be inserted into Eq. (3-1-11) which is then inte-
grated over depth. Application of the rules for changing the sequence of

differentiation and integration and use of the boundary conditions (3-1-10) yields
the following two-dimensional balance equation

o(Hp
% + Vy(HpVy) = 2, + HS, (3-1-12a)
where
¢ ]
D(x, ) = =V, .[.. P dz + I Vi(DyV,\p)dz (3-1-12b)
L]

is the global dispersion term, and

- | I . ap d I
S l p ot
WX, y)=H \ ldz + (D, 72 u,p)'_g (D, 32 u,p)x-h. (3-1-12¢)

is the average source term.

The last two terms on the righthand side of Eq. (3-1-12¢) represent the fluxes
at the air-water interface and at the bottom and must be expressed using the
surface boundary conditions for p. Thus, the term HS, in Eq. {3-1-12a) constitutes
the total input in a water columo of unit base; if [ is a linear function ol the
concentrations of the different components this term can be expressed as a function
of p and of the mean concentrations of the interacting constituents. As far as the
first term on the righthand side of Eq. (3-1-12b) is concerned, it can be seen that
this term describes a dispersion, which is due to the velocity Nuctuations in the
vertical direction. It would be zero if the velocity were uniform over the depth,
but it is well known that this is never the case (the velocity is maximum near
the surface and vanishes at the bottom). Assume, for example, the density p to be
greater.th.an zero only in a small vertical column, located at the point {x,, yy), at
a certain instant of time t,. The distribution of the depth-averaged concentration
P, w:hu:h is just an impulse in {xg, o) at t,, would become broader and broader
as time goes on, even if there were ne turbulent mixing, because the horizontal
velocities are different at different depths. Accordingly this term has been
incorporated into the dispersion term, and, in analogy with Eq. (3-1-7), this

transport can be described by a Fickian type of Now (for example, Sayre, 1972),
ie.,

1 4.,
EL pindz = —eVyj (3-1-13
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with

o ]

Since the variations of v, are particularly large, longitudinal dispersion is dominated
by this mechanism, rather than by longitudinal eddy diffusion. For practical
purposes, some further simplifying assumptions are usually made for Eq. (3-1-12),
which may lead to {see, for example, Holley et al., 1972)

8(Hp)
o
where the over-bars have been left out for the sake of simplicity.
Integrating Eq. (3-1-12) over the river width one can derive, in a very similar
manner, the one-dimensional halance eguiation
d(Ap) + {Avp)
ar al

—— + Vy(Hpv)) = V\(H(e + D)V,p} + HS, (3-1-14)

=7+ AS {3-1-15a)

where p and v now denote concentration and velocity averaged over the river
cross section A, and the symbol ! is used now for the distance along the axis of
the river. The terms & and S are expressed by formulae analogous to Eqs.
(3-1-12b) and (3-1-12c) (see also Sec. 3-5). Similarly, as in Eq. {3-1-14}, one can
wrile approximately

9= %(,w "”) (3-1-15b)
where D is now a scalar, called longitudinal dispersion coefficient. As already
indicated above, longitudinal dispersion is mainly due to the combined efiects of
vertical and transverse mixing and the variations of the longitudinal velocity over
the cross section. In other words, the transfer coefficient D in Eq. (3-1-15b) is
much greater than D, in Eq. (3-1-8). Since, for practical river studies the one-
dimensional balance equation is mainly used, much eflort has been devoted to
the prediction or experimental determination of the longitudinal dispersion
coefficient (see, for example, Bansal, 1971 ; Sayre, 1972 ; and McQuivey and Keefer,
1974).

The lateral boundary conditions expressing the exchange of p with the river
banks are now included in the source term A4S. Thus, considering a river stretch
of length L, the only boundary conditions for Eq. (3-1-15a) are now p(0, 1) and
p(L.1), i.e, the concentrations at the upstream and the downstream end respect-
ively. The cross-sectional average source S(mg/h m?) is given by

S. 5
§=3S, +H+A (3-1-15¢c)

where S, is the average volume source (mg/h m?), S, the average surface source

31 BALANCE EQUATIONS 55

(mg/h m?) and 8, the lateral source {mg/h m). Finally, it is worth knowing that
Eq. (3-1-15) can be rearranged in the form

a"+ _ Se,, o (Ana”) s (3-1-16a)

- A Adl ol
where
_ 04 | dwA)
Se= 5+ —ar (3-1-16b)

is the rate of water inflow (see Sec. 3-3).

Limitations of One-Dimensional Models

In river quality studies Eq. {3-1-15) is generally believed 10 be sufficiently detailed,
while the two-dimensional equation (3-1-14) is generally used for estuaries (Chen
and Orlob, 1975; Orlob, 1976). However, it must be kept in mind that the one-
dimensional equation is an approximation which may lead 10 severe errors il its
limitations are not carefully considered (Ward and Fischer, 1971). For example,
only il a quasi-equilibrium between lateral and vertical dispersion on the one
hand, and differential convection on the other, has been established, are the
average concentrations good indices and does Eq. (3-1-15b) correctly describe the
dispersion efiects (Sayre, 1972). In general, wastewaters are injected in single
points, so that Eq. (3-1-15) is not adequate in the immediate vicinity of the
outlet. Hence, before using a one-dimensionat equation it is necessary to estimate
the distance required by a tracer, injected in a point, to become well mixed and
only if this distance comes outl to be short with respect to the spatial scale of
the phenomena under analysis, can the use of a one-dimensional model be
considered to be justified.

Ofen the application of Eq. (3-1-15) is unjustified since there are pockets of
little or no Mlow on the river banks. A tracer pulse released in the river can be
partially trapped in these pockets. Thus, a sensor located in the stream sees frst
a large bulk of material and then a long tail until the pockets along the side are
completely emptied of the tracer. In this case, the river may be divided into a
main stream and a stagnant zone and the dynamics of each variable be described
by two coupled one-dimensional equations (see Hays, 1966; Thackston and
Schnelle, 1970; Sayre, 1972):

0 Anpr) | HAmvpm) _ D 0P
a‘ + a! aI A D ’ - a(pm - p\) + Amsm

a—(%s—)- = a(p,,, - pa) + A,S,

where indices m and s refer to main stream and stagnant zone respectively.
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Benthal Constituents

So lar only constituents flowing with the stream {plunctonic constituents) have
been considered, but sometimes matter and organisms settling on the bottom
{benthal constituents) are also important {e.g., water weed and sediments). Their
main characteristic is the absence of transportation mechanism, so that the
cvolution of the cross-seclional mean concentration of a benthal constituent is
described by an equation of the type (3-1-15) with v and D equal to zero (sce also
the above mentioned equation for stagnant zones). Sources and sinks for bentha!
constituents, in addition to internal processes, are sedimentation and scour.

The Method of Characteristics

Solutions of the various balance equations can usually be obtained only numeri-
cally, and much scientific effort has been devoted to the development of efficient
and reliable solution techniques. With most of them a discretization of independent
variables is introduced, and hence, the main problem these techniques have to
cope with is numerical dispersion. Since the numerical integration schemes usually
have no physical interpretation, they are not discussed here; the interested reader
is referred 10 the literature {see, for example, Hirsch, 1975} for a general discussion
of the particular properties of the different solution schemes.

A particular integration method, the method of characteristics, is described
briefly because of its stimulating interpretation and because it is the only one
which allows analytical results to be obtained sometimes (see, lor instance, Li,
1962; Di Toro, 1969; and Chapter 4). The method of characteristics can be
applied only il all model equations are of type (3-1-15) and if the dispersive
components of the Now are negligible with respect to the advective component,
i.e., il 2 = 0. Under this hypothesis the one-dimensional balance equation (3-1-15)
can be writlen as

g—‘:+n%= —%p+s (3-1-17a)
where
So = ‘70': "‘:;:” (3-1-17b)
Equation {3-1-17) can be solved if the boundary conditions at I = 0
- p(0, 1) = pylt) tz0 (3-1-18a)
and the initial conditions at t = 0
pliOy=pih O0<i=<L {3-1-18b)

are given. Since Egs. (3-1-17) and (3-1-18) are a Cauchy problem a solution exists
for a large class ol functions v, 4, Sg, and §.
The boundary conditions p,(r) are known if the cross-sectional average
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concentration p at [ =0 for ¢ > 0 can be measured, while the initial conditions
piD), corresponding to a “picture” of the river at time ¢ = 0, are rarely known in

practice.
The central idea of the method of characteristics is to substitute Egs. (3-1-17)

and (3-1-18) by the following three ordinary differential equations

dr

de _ 3-1-19
> | { a)
4 (3-1-19b)
dr

dp_ _ _1 ¢ iop+ S0 (3-1-19¢)
dt Al o ’

and the initial conditions (see point A of Fig. 3-1-1)
1(0)=0, 0)=1lo, plO)=plle) TorO<lp<L {3-1-20a)
and (see point B of Fig. 3-1-1)
10)=1to, 1(0)=0, pl0}=py(td) forio>0 {3-1-20b)

The line (¢(1), i{r), p(r)) in the (4,1, p) space, which is a solution of Eq. (3-1-19)
with a given initial condition £(0) = to, /(0) = o, p(0) = po, is called the character-
istic line. In the hydrologic literature the term is also used to denote the line
(¢(r), I(r)) in the (¢, ) plane, a practice which will be followed in this book.

It is obvious that Eq. {3-1-19) subject to conditions (3-1-20) is equivalent 1o
Eq. (3-1-17) subject 1o conditions (3-1-18) (see Fig. 3-1-1). The main point is that

Characleristic lincs

Figure 3-1-1 Cauchy problem and characteristic lines.
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P

Figure 3-1-2 The solution of Eg. {3-1-17), when only boundary conditions are known.

Eq. (3-1-17), in conlrast to the more general balance equations, has only one
family of characteristic lines, all of which propagate in the downstream direction.
Hence, the solution along each characteristic line can be obtained independently
of the solution along a neighboring characteristic line. From a physical point of
view this is quite understandable since dispersion was assumed to be insignificant,
i.e., plugs of water of differential thickness in the /-direction retain their identity
as they flow downstream. Hence, models (3-1-17, 3-1-19) are called plug flow
mudels. Equation (3-1-19) describes the dynamics of the variable p as an observer,
moving with this plug, sees them. The variable 7, which is called flow time,
represents the time elapsed since the start of the plug at {0}.

The consequence of unknown initial conditions p;(/) is now evident and is
shown in Fig. 3-1-2: the solution p(l, 1) can be determined only for the pairs
(1, £) lying on characleristic lines starting from a point on the ¢ axis (/ = 0).

Later on, when the methed of characteristics is employed, Eqs. {3-1-19a) and
(3-1-19b) are often omilted for the sake of simplicity. Only Eq. (3-1-1%¢) is used
and the corresponding models, called flow time models, are written in the form

- p= -Ffp-»s (3-1-21)

3-2 ATTRIBUTES OF THE MODELS

The river quality models analyzed in this book are composed, as already pointed
out, of several equations of the kind (3-1-15) coupled together. As shown in Sec.
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2-5, this set of equations can be partitioned into three subsets constituling the
hydrologic, the thermal, and biochemical submodels. The hydrologic submodel
is coupled with all other medels since the velocity v and the cross-seclional area
A enter all other equations. The temperature interacts with the biochemical
variables through the source terms S. Finally, biochemical variables are mutually
coupled through the source terms .

According to the assumptions made for specilying the model equations various
attributes of the model or submodels result. Since these attribules are used quite
often below, it seems worthwhile listing the definitions of all the corresponding
types of models although some of those have already been introduced.

linear model: all equations are linear in the state variables

nonlinear model: at least one equation is nonlinear

plug flow model: the diffuston coefficient D is equal to zero in all equations

dispersion model: the diffusion coeflicient D is different from zero

steady state model: partial derivatives with respect to time are missing (equal to
zero)

unsteady state medel: at least one equation contains a time derivative

time-invariant mndel: all the parameters are constant in time

time-vurying model: al least one parameter is lime varying

{umped parameter model: the equations are ordinary differential equations (the
independent variable may be time or space)

distributed purameier model: at least one equation is a partial differential equation

fow time maodel: a lomped parameter model with flow time as independent
variable

ecological model: at least one state variable is the biomass ol some living com-
partment of the food web

chemical model: no state variable of the biochemical submodel is the biomass of
a living compartment of the food web

It is important to notice that some of these attribuies are not independent.
For instance, time-varying models are unsteady state models and sleady state
models are lumped parameter models. Moreover, these attributes can be different
when looking at the model as a whole or at the single submodels. For example,
a river quality model is always nonlinear because of the terms Ap and Avp
appearing in Eq. (3-1-15) (recall that v and A are funclions of the slale variables
of the hydrologic submodel), while the biochemical submodel, in which r and A
have to be considered as paramelers, may be a linear model (see, for instance,
Sec. 4-1).

3-3 THE HYDROLOGIC SUBMODEL

The hydrologic submodel is, in the most general case, constituted by two coupled
partial differential equations, namely the water mass and momentam bulance
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equarions. These equations can be written in three, two, and one dimensions as
already shown in Section 3-1. Nevertheless, the following discussion is restricted
to one-dimensional models since only these models have been used extensively in
river pollution modeling, while higher dimensional models have been employed
for studies of estuaries and lakes (see, for instance, Chen and Orlob, 1975, and
Orlob, 1976).

In the general one-dimensional balance equation {3-1-15)

MAp} | é(Apr) 2 ap
—'?‘-'—'i'—‘." N (DA al = AS {3-3-1)

p is identified with the waler density p (constant in space and time). Defining flow
rate 0 = Av

7.4 3
{ +(Q

3 AS

is oblained, which is the so-called conrinuity eguation. The term
t'M a9
Se= o

appeurs in all one-dimensional balance cquations (see Eq. {3-1-16}), where it can
be replaced by the rate AS of water inflow. If there is no !ateral infllow and/or
outllow along the river stretch (§ = 0), the continvity equation becomes

a4 aQ
ata
Equation (3-3-2) can be integrated only if it is coupled with the momentum

balance equation or if the river discharge Q at any point [ is assumed to be a
known function of the depth H of the river at that point, i.c.,

Q=0%H,0 (3-3-3)

This lunction, called stage-discharge relation, is in general a convex funclion as
shown in Fig. 3-3-1 and usuvally corresponds to the real behavior of the stream
when the river low is varying relatively slowly in time. From Eq. (3-3-3) and from

=0 (3-3-2)

o  Figure 3-3-1 Stage-discharpe relutionship at a piven
0 H  poinl
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the knowledge of the geometry of the river bed a function
Qul. 1} = O{A(L1). 1) (3-3-4)

can be derived which is also convex. If the conlinuity equation {3-3-2) is multiplied
by the velocity

_"0
=
which s well defined because of Eq. (3-3-4), the new equalion
ﬂQ PQ
3.
ﬂt A =0 (3-3-5)

is obtained. This expression corresponds to the so-calied kinematic approximation
and implies that the river discharge is constant along the characteristic line df/dt =
w, i.e., the wave is propagating downstream at velocity w and there is no spreading
effect. In other words, the streich can be considered. from a functienal point of
view, as a pure time delay : an impulse variation of flow rate at one point produces

a delayed impulse variation downstream, while a bell-shaped hydrograph as shown
in Fig. 2-1-4 should be expected. Nevertheless, this model reproduces the observed
lact that the velocily of propag.mon increases with depth. Indeed. since QM his
convex with respect to A and A is increasing with H, it follows that w is an
increasing lunction of the depth.

If the kinematic approximation described by Eq. (3-3-5) scems to be un-
reasonable, the natural alternative is to make use of the momentum balance
equation which can be derived from Eq. {3-3-1) by neglecling the dispersion term
{D = 0). Thus, Eq. {3-3-1) with p = pr becomes

MAv) | HA) AS

F P
or, by eliminating »,
3 . A
'Q P Q g (3-3-6)
ﬂl p

The term § at the righthand side of Eq. {3-3-6) takes into account the distributed
sources and losses of momentum which are, respectively, the component of the
gravity lorces in the direction of the river and the force induced by hydrodynamic
friction. The first of these two terms, say S,. can be given the form

dh 1 8

where g is the acceleration of gravity, h is the elevation of the bottom from a
reference level, dh/d] is the bottom slope and H. is the depth from the free surface
to the centroid of the cross section. The second term §; is usvally written as

82 = —pyis {3-3-8)
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where i is the so-called friction slope and is, in general, a function of the river
flow Q and of the river depth H.

Il we now deal, for simplicity, with rectangular cross sections (rectangular
channel) of constant width, then

A=YH H.=1iH
where Y is river width, so that Eq. (3-3-7) becomes

dh oH
Si=-pgl it 31

which, together with Eqs. (3-3-6) and (3-3-8), gives rise 10 the momentum equation

aQ 8 gi)_ (dh H .
-a—‘-‘l" BI(A = —gA a"‘a + i {3-3-9)

It can easily be shown that il the [riction slope i, is constant the momentum

equation together with the continuity equation (3-3-2) degenerate into Eq. (3-3-5)

(kinematic approximation). This can be easily understood, since il the friction

phenomena are independent of ¢ and H, then a one to one relationship must

exist between @ and H at any point (stage-discharge relation). Thus, if the model

is to describe the attenuation and spreading out of the wave during its propagation,
- the friction slope i, cannot be assumed to be constant in Eq. (3-3-9).

Both theoretical and experimental investigations indicate that the terms
appearing on the right hand side of the momentum equation are, in general, quite
large with respect to the kinetic terms appearing on the left hand side of the
equation. Thus, if the kinetic terms are neglected a new approximation of the
momentum equation is obtained in the form '

. 0H = dh
TR AT}
which, when derived with respect to time, gives
d (oH dis
E(ﬁ) e (3-3-10)

This approximation (called parabolic approximation) is not so crude as the
kinematic one since the friction slope i, is allowed to vary in time. From the
continuily equation and Eq. (3-3-10) a new equation is obtained in the form
; . 0 &0

ﬂ[ W (Tf = D (TF_ (3'3‘]“
where the velocity w and the diffusion D* are suitable positive lunctions of Q and
A. This equation shows that when moving downstream at velocity w the time
derivative ol Q has the sign of #*Q/dl*. Therelore, a bell-shaped impulse propa-
gating downstream at velocity w will be attenuated (at the peak 3°Q/3* < 0)
and consequently spread out.
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In summary, it can be stated that relatively simple versions of the continuity
and momentum equations describe quite satisfactorily at least the two main
characteristics of the phenomenon, namely propagation and attenuation of the
peaks. For this reason, such equations have been employed for years {the ﬁr‘st
derivation was made by Barré de Saint Venant in 1871) and are still used in
simulation studies despite three main disadvantages.

The first disadvantage is that these equations can be integrated (after dis-
cretization) only il the function A(H,I) is known in a suitably high num})er of
points I, and obviously this information is not always eas-ily obtau-:ablc.
Secondly, the solution of the continuity and momentum equations requires a
relatively high computational effort. In fact, the method of characteristics (in a
version slightly modified with respect to that described in Sec. 3-1) or some
explicit or implicit scheme for integrating partial differential equations must be
used. The integration along characteristic lines after discretization in time and
space (the river segment is divided into reaches) implies the need to work on a
nonregular grid in the (/, 1) plane. The space step Al (length of the reach) must be
relatively small in order to give a sufficiently accurate description of the geometry
of the river, while the time step At is related to Al through the propagation
velocity w (Ar = Aljw). In real cases this relation implies a very small Ar with

* _]kxn 1

Xn

— e

Figure 3-3-2 Description of a river as a sequence of i linear reservoirs.
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respect to the duration of the phenomenon so that the method of characteristics
turns out to be time consuming. On the other hand, explicit and implicit schemes
use regular grids in the (/, 1) plane and are therefore more attractive. Explicit
schemes are very simple to program but unfortunately they require very small
time steps &t (Ar < Al/w), since otherwise they become numerically unstable (see
Greco and Panattoni, 1977). Implicit schemes are stable for any choice of the
space and time intervals, and for this reason they are usually prelerred to explicit
schemes, even though the latier lead to algebraic equations which are easier to
solve. Finally, the third disadvantage which is worth mentioning is that the [riction
slope i is, in general, unknown and must therefore be identified by applying a
suitable parameter estimation scheme. Thus, in order to selve this problem it is
necessary for some hydrographs to be available,

For all these reasons, simpler models have been proposed and used. Some of
these models are derived lrom the general mass and momentum balance equations
following a suitable crilerion of approximation, such as space discretization, time
discretization, linearization, frequency domain approximation or others. For
example, the model obtained with the parabolic approximation (Eq. (3-3-11)) can
be further simplified by assuming that w and D are two constant parameters to
be estimated by fitting some available hydrograph. Many other models, actually
the majority of the models, have been proposed in a very naive way by postulating
the mathematical structure of the different blocks constituting a heuristic con-
ceptual model. For example, one of the most classical models of this kind proposed
by Nash (1957) corresponds to the model shown in Fig. 3-3-2, where the river is
thought of as a sequence ol n equal reservoirs.

Il the outlet of each reservoir is assumed to be proportional to the volume of
the water stored in the reservoir, then the system is described by the following
linear cquations (mass balance equations):

Xp=u-kx,

Xy =kxy = kx,

.\.'.. L) ’\'.\',. I o7 k\',.

r=kx,
where v; is the volume of water stored in the i-th reservoir, u is the input {low
rate of the first reservoir and v is the output flow rate of the last reservair. In a

more compact form the model can be considered to be a finite dimensional linear
system of the kind

x(1) = Fx(t) + gulr) (3-3-12a)

y(t) = h7x(1) (3-3-12b)
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where
!='[ X1 X2 Xy ... Xp=1} x,.]r
—k 0 0 0 0 1
k -k 0 0 0 0
F=| 0 k -k 0 0 g=|0
o 0 0 ..k —k 0
hf={ 0 0 0 ..0 k]

The impulse response (unit hydrograph)
ji)=hTeg

of this model can be explicitly determined since the matrix F has a very simple
form (Jordan canonical form), and turns out to be

. 1 ! n—| g,
}’(l‘):—T(" ”!(?) e T {3-3-13)

where T = 1/kis the so-called time constant of the reservoirs. The impuise response
(1) is plotted in Fig. 3-3-3 for different values of n. Obviously the curves in
Fig. 3-3-3 can also be interpreted as the flows at the end of the intermediate
reaches {reservoirs), so that by comparison with Fig. 2-1-4 it can be concluded
that this model can take into account both propagation and atienuation of the
peaks. The time of occurrence of the peak can immedialely be derived from
Eq. (3-3-13} and is given by
t=m-NT

-

0 T T ir [
Figure 3-3-3 The impulse response of the Nash model for different values of n,
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while the value y* of the peak is

. I_(" - l):e"""'

ST (m=1)

If the impulse response of the real system were available, these two expressions
could be used 1o estimate the two paramelers, n and T, such that the time of
arrival t* and the height y* of the peak would be exaclly the same in reality and
in the model. In practice, however, the two parameters are selected such that a
good fit with some available hydrograph is obtained.

Although there is no particular advantage in doing so, the Nash model and
similar linear models are often presented in terms of transfer functions. The
transfer function M(s) associated with a linear system of the kind (3-3-12) is the
Laplace transform ol its impulse response and is given by

IR ) N iy
M(x) = U= hiisl - F)"'g (3-3-14)
where s is the complex variable, U(s) and Y{s) are the Laplace transforms of u(t)
and y(r}, and I is the identity matrix. Substituting the expressions for F, g, and h™
corresponding to the Nash model into Eq. (3-3-14)

1
(14s7)
is obtained, which states that the transfer function of the system is simply the
product of n transfer functions m,(s), which, in this particular case, are all equal

to 1/(1 + sT). On the other hand, the transfer function of a single reservoir
described by

Mis) =

X= —kx +u
y=kx
is given by (see Eq. (3-3-14))

l
== . -1, =
mis) =k-(s+ k) | I +sT
which proves that the transfer funclion of the Nash mode! is the product of the
transfer functions of the n reservoirs, as should be expected, recalling that the
transfer function of two systems connected in series is the product of the two
transfer functions (see Sec. 1-2). This means that if the reservoirs were allowed to
be different a transfer function would be obtained of the kind
3 n » |
M) = [l mds) = e
ll=_]l ‘ i[=—l| I +sT;
which is characterized by n parameters to be estimated.
Moreover, il the conceptual model is modified and the river considered a
sequence of channels and reservoirs, and each channel characterized by a transport
time 1;, then a transfer function would be obtained of the following form (recall
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Figure 3-34 Description of a river as a bunch of parallel connected linear reservoirs

that a system characterized by a pure time delay r; has a transfer function given
by exp (—1;5))

e "
M(s) = nl=| =
[T +sT) []Q+sT)
=1 i=1

e‘l!

where t is the sum of all time delays introduced by the channels.. )
Another possible conceptual model consists of n reservoirs con'nf:cted in
parallel as shown in Fig. 3-3-4, where the coefficients 2, satisly the conditions

in order to conserve the tolal mass. Since each reservoir is characterized by a
transfer function

4

l+sT;

and the transler function of n systems connected in parallel is the sum of the
single transfer functions we have

myls) =

n=1
. [T +stp
Ms)= Y mfs)= LH—— (3-3-15)
i=1

(1 +sT)
i=1
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where the time constants t, are svitable functions of the As and T/'s. The transfer
function given by Eq. {3-3-15) is the most general one which has the property of
conserving the mass between input and output of finite dimensional systems. In
fact, given a function f(1) its Laplace transform is given by

Fis)= j.w e f()de
(1]

S0 that

F(O) = r fiydt
[[]

Thus, the conservation of mass between input and output of a given system can
be expressed as U(0) = Y(0), which implies (recall that ¥(s) = M{s)U(s}) that
M(0) = t, and this property is indeed satisfied by Eq. {3-3-15). This shows that
the model structure given in Fig. 3-3-4 does not really impose any particular
constraint on the input -output relationship of the system, since the corresponding
transfer function is the most general one satisfying the principle of mass con-
servation. Hence, even if a model structure has been postulated which seems to
be highly specific, it may turn out that the corresponding mathematical mode! is
the most general one.

A discussion of other hydrological models such as those in which overland
flow and/or underground flow are involved, which would somehow make the
survey complete, is not undertaken since it would represent too great a departure
from the main goal of the book. However, the problems, the difficulties, and the
different approaches already discussed with reference to wave propagation, are
quite representative of any other field in hydrology and the interested reader
should therefore be able to enlarge his knowledge by referring to the most recent
books and treatises on this fascinating field (Gray, 1970). Of course, afier this
short and crude introduction to the art of modeling hydrological phenomena the
reader cannot be expected to be familiar with this topic. For this reason, detailed
descriptions of the dynamics of river flow will not be used in the remainder of
the book. This is actually quite normal, since almost all studies on river poliution
make relerence to steady state hydrelogical conditions.

3.4 THE THERMAL SUBMODEL

Heat can be considered to be one of the dispersing substances for which the
equations of Sec. 3-1 were derived. This means that the distribution of heat in a
river is governed by an equation of the type {3-1-6) with

p=10pT

where (), p, and T are the specific heat capacity, the density, and the temperature
of the water respectively. This equation establishes the thermal submodel. As
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discussed in Chapter 2, the hydrological variables in it may be considered to be
externally imposed, since the influence of the temperature distribution on
hydrology is small. Moreover, as in Sec. 3-3, our considerations will be confined
to the one-dimensional balance equation which is usually sufficient for temperature
investigations in ordinary rivers. Only for estuaries and river impoundments is
the solution of the full two- or three-dimensional model ofien necessary (see
Orlob and Selna, 1970: Leendertsee et al., 1973; Orlob, [976). {The expressions
given below for the components of the air-water heat exchange could also be
used in the higher dimensiona} case if T is understood to be the local surface
temperature rather than the cross-sectional mean temperature.) Hence, if it is
assumed, for the sake of simplicily, that there is no water added to or subtracted
from the river section considered, the one-dimensional heat balunce equation reads
(see Eq. {3-1-16))

T aT 1 a(. T\ 1{i1 Y
o el TV L - LFT, 3-4-
T A (’”’ at) Up(A 4 F M') .

where / = amount of heat added per length and time unit by man

Y = river width

F = Nux of heat from the river to the atmosphere per unit surface area

M = set of meteorological conditions which determine the heat exchange
between water and atmosphere

The less important components of the heat budget, like heat exchange with the
river bed and frictional heat (see Sec. 2-2), are omitied, and ¢ and p are assumed
to be constant.

The simplest way to specify the function F(T, M) in Eq. (3-4-1} is to assume
that the net heat Aux through the air-water interface is proportional to the
deviation of the water temperature [rom the equilibrium temperature T {see Sec.
2-2). If, in addition, the longitudinal dispersion is disregarded and the characteristic
method applied by introducing the Now time t (see Sec. 3-1) the equation

dT 1 /1 Y
e Op(;I For kT Tg)) (3-4-2)
is obtained, which has been used guite often (see, for example, Edinger et al.,
1968). However, the simplicity of Eq. (3-4-2) is deceplive, because T, is a compli-
cated function of the meteorological conditicns, and because k cannot be
considered constant if the model is to be realistic.

Therelore, the most common approach 1o specify F(T, M) is to develop
separate expressions for each component of the heat flux through the air-water
interface and to replace F(T, M) by the sum of those expressions, i..,

F(T.M}= —F,(M) + F,,(M) — FAM) + Fo{M) + F(T} + F{T, M) + F(T, M)
{34-3)
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where F, = incoming solar radiation

F,, = reflected solar radiation

F, = long wave atmospheric radiation

F.. = reflected long wave atmospheric radiation

F,, = long wave radiation ol the water

F, = latent heat Nux

F. = sensible heat RQux

Expressions for the incoming solar radiation F, are usually based on empirical

formulae which describe the diurnal and seasonal variations of this heat budget
component in the case of clear sky. The data necessary to set up such a lormula
can easily be measured. The values which the formula yields are then corrected
for cloudiness, for example, according to the {ollowing equation

F, = (1 = 0.65h%)F,, {3-4-4)

where F,, is the solar radiation [rom the clear sky and & is the proportion of the
sky covered with clouds (cloudiness ratic). The reflected proportion of the solar
radiation depends on the altitude of the sun and on cloudiness and is also
calculated through empirical formulae which give the ratio F,,/F, as a function
of cloudiness and altitude of the sun (see, for example, Anderson, 1954). Quite
often the reflectivity is simply assumed to be constant, 6 percent being a typical
value,

The long-wave radiation of the atmosphere F, is mainly governed by the
Stefun-Bolezmann law, which says that the radiation intensity is proportional to
the fourth power of the temperature, i.c.,

Fo=r¢,0T} (3-4-5)

where ¢, is the emissivity of air, which depends strongly on humidity e,, a is the
Stefan-Boltzmann constant, and T, is the air temperature. As emphasized in Sec.
2-2, temperature and humidity distribution over a relatively thick layer are
relevant for the long-wave almospheric radiation, and these distributions ought to
appear in the expression for F,. Bui values of T, and e, measured at a height of
a few meters (usually 2 m) have proved to be sufficiently representative for the
calculation of F,. The dependence of &, on humidity ¢, (measured as water vapor
pressure in the air) is again expressed with reference to clear sky, and then
corrected for cloudiness. A typical example ol an expression of Lhis kind is (see
Anderson, 1954)

s £, = (0.74 + 0.0065¢,)(1 + 0.17b%) (3-4-6}

where ¢, is measured in mmHg and b is the cloudiness ratio. The proportion of
the long wave atmospheric radiation which is reflected is usually assumed to be
constant ; a typical value is 3 percent.

The long-wave radiation of the water F,, is also proportional to the fourth
power of the absolute temperature. The emissivity ¢, is constant and slightly
smaller than 1 because the river water is not a black body. Hence a reasonable
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expression for F. is
F,.=095T* (3-4-7)

This component of the heat budget is the least problematic one.

The heat exchange through evaporation is governed by the turbulent mixing
processes in the air layer above the waler surface (see Sec. 2-2). Therefore, it should
be described in principle by equations like the balance equations of Sec. 3-1. In
praclice, however, simple, semiempirical formulae are used, which give the heat
flux as a function of a very lew meteorological parameters. The most common
formula for the Nux of lutent heat is

Fy= f(w)(e,(T) — o) (3-4-8)

where f}{w) is a function describing the influence of the wind velocity w on
evaporation, and e,(T) is the saturated water vapor pressure at the water
temperature T. The proportionality between F; and the water vapor difference
can be justified in the following way: the flux of water vapor is proportional 1o
the gradient of the waler vapor pressure {see Sec. 3-1). and this gradient is
approximately proportional 1o the difference in Eq. {3-4-8). (Sec also Scc. 3-5,
where a formula for physical reaeration which is analogous to Eq. (3-4-8) will be
explained.} Many different expressions for the wind function fliw) have been
reported in the literature (LAWA, 1971); a linear one is mostly used:

B=a+ bw (3-4-9)

where a and b are suitable constants and w is usually measured at the same height
as e, and T,. The ratio between a and b is about 1 il w is measured in m/s. The
saturated waler vapor pressure e,{T) is very well known and may be expressed in
the model by a convenient empirical formula. An example, given by Jobson and
Yotsukura (1972), is

e(T)=0.75exp(54.721 — 6788.6T "' — 50016In T)

where e, is in mmHg and T in Kelvin. In analogy to Eq. (3-4-8) the Aux of sensible
heat is written as

F.=alwlT - T) (3-4-10)

where « is the wind function for convective heat transport. Since the transport
mechanisms for both latent and sensible heat are the same, a close correlation
between o and f# can be expected. In fact, Bowen (1926) has shown that
approximately

F. T-T,

—= =0.524 - !

F

! e, =,

{3-4-11)

(Bowen ratin}, where T is in °C and e, in mmHg. This relationship has been
confirmed by many experiments.

Considering the expressions (3-4-4-3-4-10) it can be seen that Eq. (3-4-1) is
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nonlinear because of expressions {3-4-7) and (3-4-8), and that the meteorological
parameters involved are air temperature, humidity, and wind speed at a certain
height, cloudiness, and altitude of the sun. The local conditions around the river
are reflected by the parameter values in the various expressions.

Sometimes only the difference AT = T' — T between the river temperature
T’ which results from anthropogenic waste heat discharges and the natural river
temperature T is of interest. This is the case for example, if a river temperature
standard is formulated as a maxisnum permissible deviation from the natural river
temperature {which is common practice). For AT a model can be derived which
is considerably simpler than Eq. (3-4-1), because all terms which do not depend
on T are eliminated. If diffusion is disregarded and the balance equation written
in flow time

dAT

SO -
d_t—-ﬂpQ(A Y{0.950[(T + AT)* — T*]

+ B[eT + AT) — e(T) + 0524 AT]})  (3-4-12)

is obtained, by subtracting the balance equation for T [rom the one for T". Il AT
is small (which is usually the case) (T + AT)* and e,(T + AT) can be linearized
around T and Eq. (3-4-12) becomes

daT_ v f,_ P LL
ek 90 {1 ATY[&BftT + ,’i(u)(d,r + 0.524)]} {34-13)

Equation (3-4-13) is a linear ordinary differential equation which can easily be
solved. It can be used 1o calculate the effect of the heat discharge A on river
temperature T if measurements of T are available (Faude et al., 1974). Equation
(3-4-13) even remains a good approximation if instead of the “natural” tempera-
ture T a reasonable reference temperature is used, because the first derivatives of
the functions which were linearized in Eq. (3-4-12) do not vary greatly over the
range over which T usually varies. Even in the full equation (3-4-1) the terms
dependent on T are sometimes linearized around a reasonable reference tempera-
ture (see, for example, Jobson and Yotsukura, 1972), although in this case the
variations of the linearized functions themselves (rather than the derivatives) are
important.

Finally, it should be stressed that the empirical and semiempirical formulae
{3-4-4-3-4-10) are only typical examples from a great variety of similar expressions
(see, for instance, Eckel and Reuter, 1950; Anderson, 1954; Parker and Krenkel,
1970; LAWA, 1971 ; Jobson and Yotsukura, 1972; Harleman et al., 1973). There
is no set of formuiae which could clearly be considered superior to all others. In
view of their simplicity the degree of accuracy with which they can predict the
actual river temperature is surprising. Figure 3-4-1 compares, for example, the
predictions of a temperature model of type (3-4-1) for the Rhine river with
measured data at Andernach, which is about 500 km downstream from the point
where the boundary condition is imposed. The results shown in Fig. 34-1 are
waken from Motor Columbus (1971), while the model is described in Bggh and
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Figure 3-4-1 Comparison of measured Rhine river temperatures at Andernach with computer
simulation results {after Motor Columbus, 1971},

Ziind (1970). The figure shows that the calculated vatues follow the actual
measurements almost perfectly. The way in which diffusion is taken into account
in this model is worth mentioning (see also Jaske and Spurgeon, 1968): the river
is appropriately split up into two fictitious channels which flow parallel with
different velocities. The flow within the channels is without longitudinal dispersion,
but the two channels are completely mixed with each other transversely from time
to time. This computational scheme corresponds directly to the statement in
Sec. 3-1 that longitudinal dispersion is mainly due to the combined effect of
longitudinal stream velocity differences across the river and transverse turbulent
mixing.

3-S THE BIOCHEMICAL SUBMODEL

As pointed out in Sec. 1-3, one of the first steps in building a mathematical model
is the selection of the variables relevant to the problem. For the seli-purification
processes this is not as easy as for the thermal submodel, where temperature is
the natural choice. The only variable which occurs as naturally in self-purification
models is the oxygen concentration ¢, which was explained in Sec. 2-3 to be an
important criterion for water quality. As in the previous section, the discussion
in this section is confined 1o the one-dimensional case without addition and
extraction of water, and since the source term of Eq. (3-1-16) is the essential point
the dispersion term is even omitted. Then the balunce equation for the oxygen
concentration ¢ can be written as
de dc

3—l+v—ai==r(c)—R+P (3-5-0)

where r is the receration rate and the terms R and P stand, respectively, for
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consumption and production of oxygen by all kinds of biochemical processes in
the river, which may under certain circumstances also be a lunction of ¢. The
variable c(l, f) denotes the cross-sectional mean of the axygen concentration. When,
in the following, the oxygen concentration averaged over other space coordinates
is referred to the same symbo! ¢ is used and the coordinates which have not been
averaged out are lisied. Anthropogenic source terms have not been included in
Eq. (3-5-1) and will not be included in the model equations throughout this
section.

Physical Aeration
The term r(c) in Eq. (3-5-1) reads

“l dcell, 2)
ric) = H[D, % ]MI (3-5-2)

where H = waler depth
D, = vertical diffusion coefficient
& = mean z value of the water surface at (I, 1)

As shown in Sec. 3-1, the source term (3-5-2) appears after averaging the three-
dimensional balance equation over y and z. Equation (3-5-2) corresponds to the
second term on the right hand side of Eq. (3-1-12c) (the migration velocity w, is
zero since the oxygen is trufy dissolved). The term r(c) has to be expressed now
in terms of the actual boundary condition

chd)=r¢ (3-5-3)

where ¢, is the oxygen saturation concentration.
The usual way to account for condition (3-5-3) through expression (3-5-2) is

1 aell,
E[Dt —%zi)],.c = ky(c, — ) = kad (3-5-4)

where k; is called the reaeration coefficient and d denotes the oxygen deficit. A
possible justification of (3-5-4) is based on the assumplion that there is a thin
water surface layer in which the diffusion of oxygen is much slower than in the
remaining body of water. In order to keep the discussion as simple as possible
the aeration process in an open tank, which is assumed to be completely
homogeneous in any horizontal cross section, is considered. If the volume of the
layer.is small compared to the total water volume we can assume that the oxygen
transport through the layer is governed by a steady state diffision equation

de(z)
922

0 {(3-5-5)

with boundary conditions

cll=c, cll—Al=cs (3-5-6)

—
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Figure 3-5-1 Idealized vertical oxygen
profile in a river.

where A is the thickness of the layer, and c, is the oxygen concentration at
z = ¢ — A. The assumption of a steady state within the layer is equivalent to
assuming that during the time in which the steady state in the layer is reached
the c-value at £ — A does not change significantly, which is reasonable under the
assumptions made above. The solution of the diffusion equation (3-5-5) satislying
the boundary conditions (3-5-6) is a linear [unction, therefore the vertical oxygen
profile is as shown in Fig. 3-5-1 {remember the assumption of practically perfect
mixing underneath the surface layer) and

dc ¢, — ¢

oz A

in the layer. Since the volume of the layer was assumed to be very small

Ca=C¢C

and Eq. (3-5-4) resulis.

There is some experimental evidence for the existence of that surface layer in
which the turbulent mixing is much less effective than in greater depths, but until
now no satisfactory quantitative theory for it has been developed. This means
that the value of k, in Eq. (3-5-4) cannot be calculated accurately from more
fundamental river parameters like velocity, depth, etc. There are instead a lot of
approximate formulae, derived through different theoretical approaches or directly
through regression analysis of measured values of k;. In the latter case k, is usually
expressed as '

ky=a, 0 H™ ™ (3-5-7a)
Qr as
.kz = GID"“H_ N (3‘5:"3)

where D is the longitudinal dispersion coefficient (see Sec. 3-1), and quantities
symbolized by Greek letters are positive parameters. Il such a formula is given
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with specific values for the parameters il is usuaily said to be valid only for certain
classes of rivers.

) Since the theoretical basis for the evaluation of expression (3-5-4) is so weak
its dFPcndence on river flow rate Q and temperature T is practically also only.
empirically known. The saturation concentration ¢, is independent of Q. The
temperature dependence of c, is very well known from experiments and may be

described by many suitable funclions. A second order approximation, used b
Beck and Young (1976), for example, is P ' d

¢, = 14.54 — 0.39T + 001 T2 (3-5-8)

with T in °C and ¢, in mg/l. For the temperature dependence of k; an expression
of the kind

ka(T) = kp{20)at "~ 29 (3-5-9)

is guilc often used (r..ec, for instance, Sec. 5-2 and Isaacs and Gaudy (1968)), where
a is a parameter slightly greater than 1, and T is the temperature in °C. The

0.2- 20
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Oxygen saturation concentration ¢, (mg/1)
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Figure 3-5-2 Temperature dependence of the oxygen saturation concentration and of the reacration
coefficient for a particular river {after Krenkel and Parker, 1969).
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temperature dependence of ¢, and of k, for a particular river (Krenkel and Parker
(1969)) is given in Fig. 3-5-2. The dependence of k; on Q for a particular river
can easily be derived [rom formulae of type (3-5-7a), il the functions v(Q) and
H(Q) are known, which is usvally the case (see Secs. 3-3 and 5-3). In general, for
a given river this dependence is quite weak. The physical reasons for this is that
there are two effects which partly compensate each other: on the one hand the
depth H increases with increasing @, which would result in a smaller k, value
(see Eq. (3-5-4)); on the other hand, turbulence also increases, which enhances
oxygen transport from the surface into greater depths (ie., the surface layer
mentioned above becomes thinner).

Reviews of the different approaches to the calculation of k, are given by
Thackston and Krenkel (1969), Negulescu and Rojanski (1969), Wilson and
MacLeod (1973), and Miiller (1975). By and large one can stale that the expression
(3-5-4) has been proved to describe the physical reaeration term in Eq. (3-5-1)
well, but that there is no satisfactory way to calculate k; from easily measurable
river characteristics like depth and velocity, not to mention nonhydrologic
influences like wind or pollution. Hence k, should be considered a parameter
which has to be estimated from observations of river quality variables (see
Chapter 3).

Chemical Models

The processes summarized by R in Eq. (3-5-1) are so complex that it is clear
from the beginning that one cannot introduce a state variable for each pollutant
and each species, so that the problem emerges how to select appropriately
aggregated variables. On the other hand, there may be other quality criteria
(beside the oxygen concentration) which are of final interest; for instance the
concentration of certain compounds, like phenols or nitrite.

The most direct approach to the problem is to postulate the existence of a
chemical reaction between oxygen and the oxidizable matter in the river, withoul
worrying about the organisms involved in the degradation (Chemical Madels). The
great variety of compounds usually present in rivers is reduced to one or a few
classes of oxidizable substances, which are treated as fictitious reactants. Because of
the actual differences among the constituents of these fictitious reactants, the
amount present is best characterized by the amount of oxygen needed for their com-
plete biochemical oxidation. This measure of pollution is the biochemical oxygen
demand (BOD) (see, for example, Gaudy, 1972) already mentioned in Sec. 2-3,
and the corresponding state variable is denoted by b (with an index if there are
several components) in the following.

However, this quantity is hard to measure directly, even il all oxidizable
matter is looked upon as one reactant, since it takes a very long time until all
degradation processes have died away in a river or wastewater sample. Figure
3-5-3 illustrates this Fact : the curve, which was given in Wilderer et al. (1970), and
which is based on measurements by Gotaas (1948), shows the accurnulated oxygen
consumption of a wastewater sample over time. After more than a month the
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Figure 3-5-3 Oxygen consumyption of a wastewater sample over lime and relationship 10 BOD, COD,
and BOD; (curve lrom Wilderer et al., 1970).

ultimate oxygen demand cannot be ascertained, even though with the temperature
as high as 20°C the reaction rates were fairly high (see page 88). The bio-
degradable matter originally present may well have disappeared completely alter
a much shorter time, but part of their chemical energy has been converled into
chemical energy of living biomass, which is then released through oxidation very
slowly (see Sec. 2-3).

One way to avoid this long measurement lime is 10 observe the oxygen
consumption over a reasonable time and then to estimate the BOD by extra-
polation. However, this requires a model for the oxygen consumption in the
measurement experiment, which is subject to the same kind of discussion as the
oxygen consumption models for the river itself (see page 79). If the parameters
of this model are assumed to be known it suffices to measure the total oxygen
consumption during the measurement period in order 1o estimate the BOD.
Therefore, quite often the oxygen consumption of samples during 2 or 5 days,
abbreviated BOD; or BOD, is taken as a measure of b. But the assumption that
all parameters of the BOD kinetics are known a priori is hardly fulfilled, since,
for instance, the oxygen consumption over 2 or 5 days depends strongly on the
biological community caught randomly with the sample. And indeed BOD; or
BODs measurements are notorious for their bad reproducibility.

Another way of easily obtaining an approximate BOD value is to oxidize
chemically all matter and measure the oxygen consumption. This measure is
called_chemical oxygen demand (COD). Since in the ideal case all components
are completely oxidized the COD can be higher than the BOD because there
may be oxidizable compounds present which are not biodegradable (see Fig. 3-3-3).
(The boundary between very slowly degradable and nondegradable cannot be
defined precisely, however.} On the other hand, there may be compounds which
are not oxidized by the oxidant used. As far as organic matter is concerned this
is quite unlikely with potassitm dichromate (K ;Cr,0,), which is used nowadays
for standard COD measurements. With potassium permanganate however, which
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was formerly used, often even less than 50 percent of the theoretical COD of the
organic matter was measured. The inorganic matter relevant to the oxygen budget,
which is essentially ammonium and nitrite, is usually determined separately. Its
oxygen demand can be determined stoichiometrically and subtracted from the
measured COD value if necessary. (However, ammonium, for example, is not
oxidized by either of the oxidants mentioned.)

The simplest and most widely used chemical model reflecting the major
characteristics of BOD reaction, such as the one in Fig. 3-5-3, is the first order
reaction model

ob  8b

FL T kb (3-5-10)
which is part of the well-known Streeter-Phelps model (see Sec. 4-1). The parameter
k, is called degradation or deoxygenation coefficient, and the biodegradable matter
is assumed to be dissolved or suspended. Depending on the circumstances, non-
linear models have also been found uselul, for instance,

b b

3 tvg= —habe (3-5-11)
b b ,

3tz = —ab (3-5-12)

(see Sec. 4-2). Because of the definition of BOD, the righthand sides of Egs.
(3-5-10}-3-5-12), which represent volume source terms (see Sec. 3-1), must directly
enter the model eguation lor ¢. Hence, for example, Eq. (3-5-1} becomes

%?-%v%:k,{c,— A—kb {3-5-13)
il Eq. (3-5-10) is used. If the total BOD is divided into several components the
degradation dynamics are described by as many equations of the types given above
with different values of the paramelers (see Sec. 4-2). Usually no measurements
of the single components are available, so that the number of output variables is
smaller than the number of state variables. Nevertheless, parameter and state
estimation of those models may still be possible, as will be shown in Chapter 5.
Sometimes, however, measurements for single components of BOD may be
available. An example already mentioned is the oxygen demand of ammonium,
which is oxidized to nitrate. Measurements of the conceniration of ammonium
can be used for estimating a model containing a chemical reaction equation for
a fictitious reaction between ammonium and oxygen.

The chemical models given so far were for dissolved or suspended matter
only. Their application to benthal BOD, for instance BOD ol sediments, is
straightforward : if, lor the moment, the change of the benthal BOD by sedimen-
tation or resuspension is disregarded, the same kinds of equations described above
may be used but without derivatives with respect to ! (see Sec. 3-1). The first-order
reaction as in Eq. (3-5-10), however, is hardly realistic in this case, since the BOD
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degradation of sediments is taking place essentially at the water-sediment inter-
face. Conditions in deeper sediment layers are usually anaerobic, which means
that degradation there proceeds very slowly. Expressions more appropriate are

db

Frinie ! {3-5-19)
(Edwards and Rolley, 1965) or even the zero-th-order reaction
ab
3= {3-5-15)

Thus, using Eq. (3-5-10) for the dynamics of the planctonic BOD (b;) and Eq.
(3-5-14) for the benthal BOD (b,), the model would read

db db
_a:l + ”_ali = —ky b, (3-5-16a)

ab
a_:z = —kypcto (3-5-16b)

de  dc
E + Uﬁ =kyle,— ) = ky by — ku_("-‘ {3-5-16¢c)

where dispersion and external sources have again been left out. Sedimentation and
resuspension can be dealt with by adding suitable terms to the righthand sides
of Eqgs. (3-5-16a) and (3-5-16b), as discussed on page 90 {(a review of different
approaches to the problem of benthal BOD is given by Miiller, 1975).

Little more can be said on the temperature dependence of the degradation rate
constants used in chemical models than thal they increase as T increases. There
are numerous empirical formulae to express this dependence, in most cases a
formula of type (3-5-9) is used. The dependence an Q is usually neglected.

Ecological Models

It is already obvious from Fig. 3-5-3 that the simple chemical reaction models
described so far only very roughly describe the actual oxygen dynamics in a river:
the many plateaus which are turnovers of chemical energy from one link of the
food chain to another certainly cannot be adequately explained as reactions
between BOD components and oxygen. Figure 3-5-4, taken [rom Gates et al., (1966),
illustrates that even the qualitative behavior of the oxygen concentration may be
unreproducible by a simple chemical reaction model like the frequently used
Streeter-Phelps model, which is given by Egs. (3-5-10} and (3-5-13) (see Sec. 4-1).
In the figure, observed oxygen values from a laboratory self-purification experiment
are compared with the model solution. In the course of the experiment organic
pollution was added at three time instants, which can easily be identified from
Fig. 3-5-4. The parameter k, in Eq. (3-5-13) was known, while k, in Eq. (3-5-10)
was estimated separately for each of the three stages such that the fit to the
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Figure 3-5-4 Reproduction of measured oxygen sag curves by means of the Streeter-Phelps model
(after Gates el al., 1966).

measured data was optimal in the least square sense (see Chapter 5). The figure
shows that in particular the slow rise of the sell-purification in the first stage
(which is probably due to the low initial bacterial mass) cannot be simulated by
the model.

Also, for more sophisticated models, which explicitly take into account living
organisms, suitably aggregated variables have first to be selected. For single,
dissolved pollutants consumed by bacteria the mass concentration will be the
natural variable {or any equivalent lo it). But for particulate pollutants the surface
is more important, since the bacteria can attack the pollutant only at the surface.
Hence in this case the available surface is a more appropriate variable (see, for
instance, Boling et al,, 1975). Usually the number of pollutants in a river is
tremendous; for the Rhine river, for instance, the number of organic compounds
is estimated to be higher than 10° (Kélle et al, 1972). Therefore, one has to
aggregate these compounds and use measures which are more meaningful for
bacterial growth than just mass or surface. Such a measure could again be the
BOD {this time of the bacterial nutrients only), which is correlated with the free
energy of the reactions the bacteria catalyze (McCarty, 1965, and 1972). Another
measure sometimes used is the total erganic carbon (TOC).

Also, the organisms cannot be dealt with by species, since this would entail
a huge number of state variables and severe measurement problems. For the
bacteria, for instance, it seems reasonable to lump together all heterotrophic
bacteria, as already explained in Sec. 2-3. Having many species in one group the
question arises whether one may use the number of individuals as the lumped
variable (which is sometimes easier to measure) or whether the biomass has to
be used. An example of how different these measures may be is given in Fig. 3-5-5
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Figure 3-5-5 Development of ciliates feeding on bacteria {afier Bick, 1964).

(see Bick, 1964), where the development of the ciliates number and biomass is
compared with the abundance of their prey, namely the bacteria. Looking only at
the protozoan number it would be hard to understand why the maximum of the
curve occurs before the bacterial maximum, while the biomass curveisin agreement
with the concept developed in Sec. 2-3 for the ciliata-bacleria interaction.
Generalizing these findings, it is important to characterize groups of organisms
in the model by their biomass, rather than by their number, because it describes
better the activities of the organisms both as predator and prey.

As explained in Sec. 2-3 the most important step in the self-purification
process is the interaction between the pollutants and the bacteria. In the case of
a single dissolved energy donor, which is assumed to be the growth Jimiting
nutrient, and whose concentration is denoted by s, the degradation can be modeled
in the lollowing way

[+ ¥53
oy + S

§=-—

B (3-5-17)

where B is the bacterial mass concentration and o, and «; are parameters. Eq.
(3-5-17) is written in flow time (see Eq. (3-1-21)) since this simplifies the notation
considerably. An equation of type {3-5-17) can be derived for a single enzymatic
reaction from the law of mass action, provided that the enzyme-substrate complex
disintegrates slowly into the reaction products and the enzyme (see Laidler, 1958).
Thus, the concentration of the enzyme appears first, instead of the bacterial mass
density B. For a sequence of enzymalic reactions, the same expression for the rate
of degradation of the original substrate can be used given certain assumptions;
the reaction parameters and the enzyme concentration in it are those of the
slowest reaction in the sequence (see Wilderer, 1969 ; Boes, 1970). Equation (3-5-17)
results if we further assume that the subsirate is degraded along a single metabolic
pathway, and that the bacterial concentration is proportional to the enzyme
concentration. Equation (3-5-17), which is named after Michaelis-Menten (1913),
is often used in cases where the assumplions which led to it are not fulfilled with

Biomass of cillates (227 mi)
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certainty. Then, it has to be interpreted as a two-parameter approximation of the
real expression of the degradation rate which is assumed to be proportional to the
product Bs for low values of s (probability of enzyme-substrate molecular
collision) and independent of s and proportional to B for s — oo {existence of an
upper limit for the feeding activity of a bacterium).

Assuming the absence of predators, the dynamic equation for the bacterial
mass may be written as

B=—p5— p,B (3-5-18)

where f#, and f; are parameters, The first term on the righthand side of Eq.
(3-5-18)is equivalent to the assumption that the ratic between the amount of newly
formed biomass and the amount of nutrient degraded (yield factor) is constant
(see Gunsalus and Shuster, 1961; McCarty, 1965 and 1972). The derivative of s
on the righthand side of Eq. (3-5-18) has to be understood only as an abbreviation
of the righthand side of Eq. {3-5-17}, which facilitates surveying. The term fi,B
in Eq. (3-5-18), which may be called maintenance rate, accounts for bacterial mass
decrease through endogenous respiration, death, and possibly predation (Dawes
and Ribbons, 1964 ; McCarty, 1972). [t is obviously only an approximation, since,
for example, the death rate ought to depend on the nutrient supply in the past.

The oxygen balance equation in flow time which results [rom the processes
described by Egs. (3-5-17) and {3-5-18) is

é=kjlc, — c} + 718 — y2,B (3-5-19)
where y, and y, are the specific oxygen consumptions for removal of s and B,
respectively. I 5 is given as BOD and #,B in Eq. (3-5-18) includes only endogenous
respiration (i.e., sell-oxidation of bacterial mass) the following relationship must
hold ;

h+hy=1 (3-5-20)

A typical solution of model (3-5-17-3-5-19) is shown in Fig. 3-5-6, together
with measurements taken by Gates et al. (1969) from a laboratory experiment
in which the enesrgy donor was glucose. The paramelers were optimaily seiected
using the quasilinearization technique described in Sec: 5-3. The variance of some
of the parameters was very high, however, becdllsé lo measurements of B were
available (Stehfest, 1973).

Equations (3-5-17}13-5-19) lor the pollutant-bacteria interaction may also be
used il many pollutants are lumped together in one variable s, and indeed for
part of the model described in detail in Sec. 4-4 this has been done. If several
pollutants or groups of pollutants are to be taken into account separately one
has to distinguish between the various possible interactions mentioned in Sec. 2-3.
The pollutants may be degraded independently according 1o Eq. (3-5-17). This has
frequently been observed (Wilderer, 1969), especially if the degradation processes
are quite dissimilar, as, for example, with a nutrient combination of carbohydrates
and proteins. To obtain the corresponding model one has to replace Eq. (3-5-17)
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Figure 3-5-6 Simple self-purification model confronted with measurements.

by as many equations of the same kind as there are different pollutants and to
add the corresponding terms in Eqgs. (3-5-18) and (3-5-19).

In the case of inhibition it is necessary to distinguish between competitive and
allosteric inhibition. Following the same kind of arguments used to derive the
Michaelis-Menten expression one can easily derive expressions to describe the
kinetics of single enzymatic reactions which are inhibited by another compound
(Laidler, 1958). Similarly, it can be argued that these expressions may be applied
to the inhibition of bacterial degradation. The resulting degradation rates are

.. L ot
5= a,+s+a3l (3521)
for competitive inhibition, and
== B (3-5-22)

=" (oez + 5)}{() + as])

for allostericinhibition, where 1 is the conceatration of the inhibitor, which may be
either a persistent compound (e.g., toxin) or another substrate whose degradation
is governed by the Michaelis-Menten equation (Hartmann and Laubenberger,
1968 ; Stehfest, 1973). The degradation dynamics for large substrate concentrations
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s in Egs. (3-5-21) and (3-5-22) can clearly be seen to be as described in Sec. 2-3:
the effect of a competitive inhibitor disappears lor s— co, while lor allosteric
inhibition the maximum degradation rate depends on I. Equations (3-5-18) and
(3-5-19) are, of course, also valid with inhibition in the degradation equation. The
dynamics of a self-purification system where degradation of one pollutant is
inhibited by another is shown in Fig. 3-5-7 (Stehfest, 1973). The measurements are
essentially from an experiment carried out by Gaudy et al. (1963), using sorbitol
and glucose as energy donors and a heterogencous baclerial population ac-
climatized to glucose. Inspection of the metabolic pathways and of the observations
ted to the assumption of allosteric inhibition (Stehfest, 1973); hence the model
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Figure 3-5.7 Two-pollutant scif-purification system: model confronted with measurements.
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used consists of the following equations
§ = 05 p
2 + 54
_ Bis:
(B2 + s2K1 + Basy)
B=—yié — 1282 — 158

0- = —6|.§| - (5;.;'2 + 63}'38

5=

where O is oxygen consumption and o;, fi;, 11, and &, are parameters which are
all positive. Again the parameters were selected optimally through the quasi-
linearization technique described in Sec. 5-3. A mode! including Eq. (3-5-21) for
competitive inhibition is described in Sec. 4-4.

In the case of repression the most natural modeling approach is to introduce
an additional equation for the concentration of the enzyme whase formation is
repressed. For an endoenzyme one possibility could be

[+ 11

. E
= % (aB-EB-oaE— A=
b= roirap B -BB-o B

- where E and R are the<concentrations of enzyme and repressor, respectively, and
A is an expression giving the rate of decrease of the bacterial mass due to decay
and predation, which may be taken rom the model equation for B. The o, are
parameters, a, being the maximum of the enzyme-biomass ratio.

For particulate pollutants very sophisticated models could easily be developed
using, lor instance, variables for different classes of particle size with the particles
passing into classes of smaller size as they are degraded. But the data needed for
estimating such models are usually lacking, so that a less refined approximation
is only possible. Equation (3-5-17) for instance, could also be used since the
justification given above applies to particles of small size.

Similar statements can be made about modeling the degradation aclivity of
bacteria attached to the river bottom. Here also colonizable surface plays an
important role. For a dissolved nutrient which is taken up by attached bacteria
as well as by suspended bacteria a possible model (without oxygen balance) is the
following

ds s o5 03§ B,
B - : 3.5.23a
- 3t+u|3i a1+sBI oy + 5 d5+81 ( )
aB, dB, a5 2
) —=f, ——B, — ,B, + 1B 3-5-23b
+v 3 ﬂlaz+531 f28, + 282 ( )
aBz 235 Bz

e .. — B3By - y,B} 3-5-23¢
% ?’a4+sm,+Bz P2Bi — y1B3 { )

where s is the energy donor concentration, B, and B, are the concentrations of
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planctonic and benthic bacterial biomass respectively, and all Greek letters denote
parameters. The second term on the righthand side of Eq. (3-5-23a) accounts for
pollutant removal by attached bacteria and may be explained as follows: the
number of bacteria getting in touch with the poilutants in the water is for smal
values ol B, equal to the number of bacteria present. As B, increases the bottom
area becomes a limiting factor, bacteria grow in the third dimension, and the
number of bacteria being in touch with nutrients and oxygen, i.e., being at the
surface of the bacterial layer, becomes conslant. Hence the biomass of the bacteria
eliminating pollutants may be assumed to be proportional to «,B,f{as + B,),
which is the second factor of the term under discussion. The first factor has an
analogous form for the reasons mentioned in connection with Eq. (3-5-17). The
same expression times a yield factor appears in Eq. (3-5-23c) for the growth of
the attached bacteria. The second term on the righthand side of this equation
describes endogenous respiration. The third term is to account for Naking off of
bacteria, which only occurs if the bacterial layer becomes too thick. Since the
bacleria flaked off continue to reproduce they contribute to B, and therefore the
term y, B3 occurs also in Eq. (3-5-23b).

For bacterial degradation of botlom deposits, which also only takes place at
the surface (because of anaerobic conditions in greater depths) a model may be
derived in a similar way. But in view of the lack of data it may be necessary to
use one cof the simple chemical models described above. This is sufficient
particularly if the processes in the bottom deposits are much less important than
the processes going on in the water, which is often the case.

For the interaction between bacteria and protozoa feeding on the bacteria
Eq. (3-5-17) may again be used (with B instead of s and protozoa mass density
instead of B), and it may even be applied to prey-predator relationships of higher
order. If one group of organisms is feeding on n others its food preferences for the
different preys may be expressed by equations like

. ;S
§i= —————p+ G — o)s, (3-5-24)

I+ JZI ﬂuSJ

where s, and p are prey and predator density, 4, and o; are growth and decay
coefficients of the prey, and «; and f; are parameters. The similarity of the
predation term on the righthand side of Eq. (3-5-24} with Eq. (3-5-21) for
competitive inhibition is obvious.

In principle, all parameters determining the ecological processes described
above are functions of both temperature and river fow rate. But in most cases the
dependencies are small, so that in view of the model structure uncertainties they
may be neglected. A temperature dependence which must be taken into account,
however, concerns the maximum specific growth rates. In the case of model {3-5-17-
3-5-19) the maximum specific growth rate of the bacteria is, for instance, a,f;, in
the case of model (3-5-23) it is y,(xs/as) for the attached bacteria. {Note that
endogenous respiration is excluded from the definition of maximum specific growth
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Figure 3-$-8 Maximum specific growth rate of Escherichia cali bacicria on various substrates vs.
temperature (after Peters, 1973).

rate) The rate coefficient a of a chemical reaction depends on T according to
Arrhenius’ law

a(T)=Pre 2T (3-5-25)

where 8,, B are parameters and T is measured in K. Since the growth processes
are chains of chemical reactions, their velocity should also depend on T according
to Eq. (3-5-25), as long as the temperature is nol so high that proteins become
denatured. This has indeed been confirmed for many species relevant for self-
purification. As an example, Fig. 3-5-8 shows the temperature dependence of the
maximum specific growth rate ji of Escherichia coli bacteria (Peters, 1973). The
units are chosen such that a straight line results if Eq. (3-5-25) applies. It can be
seen that Arrhenius' law applies, and similar curves have also been obtained for
other organisms (see, for instance, Sudo and Aiba, 1972).

The Arrhenius law should also apply to the temperature dependence of the
endogenous respiration coefficient, and this has indeed been observed, for example,
by Benedek et al. {1972). Since the Arrhenius law describes a strong dependency
on T in the temperature region we are interested in, the temperature dependence
of endogenous respiration has also to be taken into account. Other temperature
or flow rate dependencies are not considered here, although the parameter y; n
Eq. (3-5-23) in particular is highly sensitive to changes of 0.

Photosynthesis

Modeling the biogenic aeration represented by the term Pin Eq.(3-5-1)isin itse!l'
a very large field. The underlying processes have been investigated, both experi-
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mentally and theoretically, mainly for lakes or impoundments. In polluted rivers,
however, processes related to the degradation of anthropogenic wastes dominate.
Therefore a few remarks on the subject will suffice.

The simplest way 1o take the activity of phototrophs into account is to look
upon P in Eq. (3-5-1) as an external input. It could be a periodic function of
time, in order to account for variations of P due to diurnal variations of light
intensily (see Sec. 4-2), or it could even be a constant (see Sec. 5-3). If we want
to explicitly model the population dynamics of photosynthesizing organisms, no
completely new concepts (compared to the ones discussed above) have to be
introduced. The main difference between growth models for bacteria and photo-
trophs is that for the latter several growth limiting factors have often to be
considered, while for the bacteria only the concentration of energy donors is usually
important (because in the pollutant degradation processes the other nutrients
required by the bacteria occur as by-products anyway). The dependence of the
specific growth rate on the limiting factors may again be described by the
Michaelis—-Menten expression, so that, for example, the growth of planctonic
algae (neglecting dispersion) may be modeled through (Chen, 1970}

04 94 - J [PO}]  [NO;] . [€O)]
ot A ' ap+J a3 +[PO37] as+ [NO3J as + [CO,)
__BA
ﬁ;-l-AG rA

where A = algal density
J = light intensity
G = grazer density
a;, B;, ¥ = parameters
[C] = concentration of inorganic compound C

The light intensity is also a function ol A because of shading. The formulation
of the corresponding equations for the nutrients and the grazers and of the terms
in the oxygen balance equation is straightforward and need not be discussed here.

The specific growth rate of phototrophs may often be considered independent
oltemperature, as can be expected for photochemical reactions. On the other hand,
endogenous respiration depends on temperature as for chemotrophic organisms,
so that the ratio between assimilation and respiration increases as temperature
decreases (see Sec. 2-3 and Round, 1965).

Other Self-Purification Phenomena

As in the case of biochemical degradation and synthesis, there is also a greal
variety of models for the processes of sedimentation and resuspension. They differ
widely in complexity. At one end of the range there are sophisticated statistical
models like the one by Shen and Cheong (1974), which tsy to describe how
heavier particles are dragged along the river botiom. At the other end, there are
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simple first order models: for example, Woll (1971) gives the following equation
for sedimentation of suspended solids {in flow time)

. v
S= -1 S— 5
! a; + vt

where s = concentration of suspended solids
sy = initial concentration of suspended solids
o; = parameters

An analogous model may be formulated for resuspension. Relatively little work
has been done on how to include in water quality models the other phenomena
mentioned in Sec. 2-4, like adsorption, precipitation, flocculation, etc. Models for
these processes have been developed, however, in the context of the theory of
poliution control facilities (Keinath and Wanielista, 1975), and they may be
adapted for inclusion into river quality models.

The discussion of this section may lead to the conclusion that it is easy to
develop a fairly detailed water quality model for a given river. The reason for
this is that the major problem of how to determine the numerous model para-
meters uniquely from observations has not yet been discussed. Because of this
problem, to which Chapler 5 is devoted, it is usvaliy necessary to use models
which are less precise than those developed from a qualitative insight into the
problem.
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CHAPTER

FOUR

SOME PARTICULAR SELF-PURIFICATION
MODELS

4-1 STREETER-PHELPS MODEL

The so-called Streeter-Pheips model is not only the oldest (1925) among the bio-
chemical submodels, but also the one most widely used in river quality analysis.
Therefore, the properties of this model are studied in detail in this section. As
already pointed out in Sec. 3-5, the main assumption underlying the Streeler-
Phelps model is that two variables, namely concentration of BOD (biochemical
oxygen demand) and DO (dissolved oxygen) are sufficient to describe the
biochemical processes. Moreover, Streeter and Phelps (1925) assumed that:

(a) the BOD decay rate is proportional to BOD concentration
{b) the deoxygenation and BOD decay rate are equal
{c) the reoxygenation rate is proportional to the oxygen deficit

The mode! equations resulting from these assumptions are

b ob
a +u s kib {4-1-1a)
de e
%4-03,: — kb + kyle, = ©) (4-1-1b)

with boundary conditions
b(0,1) = bylr) c(0,1) = c4lr)

4.1 STREEIER-PHELPS MODEL 95

and initial conditions
b(L,0) = b{i) e(1,0) = ¢i(l)

Longitudinal dispersion was neglected for the sake of simplicity. The parameter
k, is called deoxygenation coefficient and k; reaeration coefficient.

Equation (4-1-1a) describes the dynamics of the BOD degradation. If finite
time BOD, (e.g., BOD;) is measured (see Sec. 3-5) a fixed relationship between
BOD, and BOD is usually assumed ; for example

BOD, = (I ~ ¢ %) BOD

where K (day ") is the coefficient of BOD decay as evaluated by the standard
laboratory BOD test. If the dynamics of BOD; (be) are to be described, model
{4-1-1) has to be modified in the following way

by dbg
FrIAr T

de e k,
E+ UE— = (l——C_T‘h)bo + ke, - ¢

— kb

Sometimes the difference between BOD and BOD, is assumed to be small and
Eq. (4-1-1) is directly used with b defined as BOD,.

As pointed out in Sec. 3-1, model {4-1-1) can be converted into a set of
ordinary differential equations

L ~ kb {4-1-2a)
dz
de
— = — kb + kilc, ~ ¢} {4-1-2b)
dr
di
I = (4-1-2¢)
dt
i 1 (4-1-2d)

with initial conditions

b(0) = bi(lo) c{0) = ¢(lo) 0=, t0)=0 for O<lp<L
and

b(0) = bg(te) c(0) = colto) 0)=0 0)=1o for >0

Equation (4-1-2) describes the self-purification process in flow time 1. The time t,
is called release time {Di Toro and O'Connor, 1968).

If (L, 1), bo(t), colt) are independent of time the steady state case applies, for
which the equation could be derived directly from Eq. {4-1-1) by setting all the
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derivatives with respect to ¢ equal to zero. Il in those simplified equations | is
replaced by t according to Eq. (4-1-2¢), Eqs. {4-1-2a) and (4-1-2b) result,

Equations (4-1-2a) and (4-1-2b) are linear differential equations which can be
wrilten in the form

(1) = Fx(7) + gu
¥(1) = Hx(1)
where the two-dimensional state vector x is given by

(1) = [blr) ln)]"

-k 0
i [ -k *z] = [k?c,]
The output transformation matrix is given by
H=]0 1]
if DO is considered the only output variable and by

1 0 l—e"%% 0
H=[0 1] or H=[ 0 l]

if BOD or BOD,, respectively, are also considered output variables.
The solution of Eqs. {4-1-2a) and (4-1-2b) (see Sec. 1-2) is given by

b{r) = bi0) e M~ (4-1-3a)
kb0
ky - ki
The trajectories shown in Fig. 4-1-1 are the solutions ! = {r - 1,) ol Egs. (4-1-2¢)
and (4-1-2d) and they can be used to define a function t, = tu{l,1) giving the

starting {release) time of a particle ol water which is at point [ at time ¢. Then,
since T =1 - fy, the solution of Eq. {4-1-1) can be derived by means ol Eq. (4-1-3)

and

cdty=c, - (¢, = clO}e ' + (e 5t — et {4-1-3b)

1l

J - Fipure 4-1-1 Trajectories of various water plugs
1o f 1 and the function tg = tell, 1)
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b ¢
bu(f) ""bo C‘o")'fo
.
/ / '
!
Flow !
time Flow

time
Figure 4-1-2 The surfaces b{l, 1} and c{l. 1) when the upsiream boundary conditions helt), colr) and
the stream velocity ofl, 1) are constant.
giving
b(’! ') = bll(,u(,g ')) e_ll'll =gl (4' |‘43,

cu, ’) =c - [C, _ cll"(}"-”)] e—l,(!—l.,il.l»
+ kl:“‘fﬂ::-”_) (e—.l,lr—t,,{l.n] — gkl LY (4-1-4b)
1B

The surlaces b(l,t) and c(l,t) are shown in Fig. 4-1-2 for the steady slale case in
which v is constant in space and time, while in Fig. 4-1-3 the surface h(l,1) is
presented for the case in which a constant BOD load is discharged into a river
whose flow rate Q and velocity v vary sinusoidally in time, i.e,

g=0+AQsin(@ (AQ< Q)

p =i + Av sin (@) {Av < )

Figure 4-1-3 The surface b(l, 1) when a constant BOD load is discharged in a sinusoidally varying
flow.
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In the steady state case (Fig. 4-1-2) the form of the oxygen profile is that of a
suy curve, both in Now time and in space, while BOD and DO are constant in
time at any given point. For this reason the representation of Fig. 4-1-4 is usually
preferred to that of Fig. 4-1-2, since it more clearly shows how biodegraduble
matter disappears and how oxygen concentration first decreases and then increases
as water flows downstream (sell-purification of the river). The latter property also
applies to the unsteady slate case since Eq. (4-1-4) implies that
'llm‘ bil.o) = :Iin,', [e, = clht}] =0

for all bounded boundary conditions by (f) and cy(?). The sell-purification property
corresponds to model (4-1-2) 10 have a unique and asymptotically stable equili-
brium state % = [0 ¢,]” (the matrix F has negative eigenvalues).

Figure 4-1-4 shows the existence of a critical point where the DO deficit
reaches its maximum value (critical deficit). The position i, of the critical point
and the critical deficit d, are functions of the boundary conditions since

I E dy
Tk {f[l Sie ”b_..]} (4-1-5)
and
-f
4= {.r[l (- n%ﬂ]}'"' ' (@-1-6)
(1]

where [ = kafk, is called the self~purification rate (Fair and Geyer, 1965) and
dy = ¢, — coistheoxygendeficitat ! = 0. Equations (4-1-5) and (4-1-6) can easily be
found by annihilating the first derivative of c(1) given by Eq. (4-1-3b). A number
ol interesting properties of these functions are given by Licbman {1965), Liebman
and Loucks (1966) and Arbabi et al. (1974). Some of these properties are used
in the following (see Sec. 8-2) and are now briefly mentioned. From Eg. (4-1-3),
it can be proved that the critical point exists, i, that I is positive, il and
only if

<y T (4-1-7)

o i

Figure 4-1<4 BOD and DO profiles along the river in steady stale conditions,
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Moreover, since f, by and d,, are non-negative, the critical point can never be
located downstream the point

-
k(-1

In particular I tends to L, for increasing initial loads b,, while I, = L, il the river
is perfectly oxygenated at the boundary (dy = 0). The critical deficit d, is a non-
linear function of the boundary conditions and this generates some difficulty as
will be seen later on (pages 252-254). Equation (4-1-6) may also be written in
the form

L In f {4-1-8)

bo -b!
de=—eg v
S

which shows (recall that I is bounded by L) that the critical deficit d. increases
without limit with the initial load b,. In other words, there are initial con-
centrations by, such that d. > ¢,, i.e,, the oxygen concentration predicted by the
model can be negative. This physical nonsense is obviousty implied by assump-
tion (a), which says that the deoxygenation rate is independent of the DO
concentration. While this assumption is reasonable at high levels of DO, it is at
the least doubtful at low values of DO, when anaerobic conditions can occur
(see Secs. 2-3 and 3-5). A modified nonlinear model which does not have this
disadvantage will be shown in the next section.

The influence on the model of variations in some of the main parameters
can now be considered (sensitivity analysis}. The approach differs depending upon
whether large or small variations of the parameters are expected. {There are also
other considerations which may be relevant for the selection of the suitable method
of sensitivity analysis; see Stehfest, 1975) In the case of large variations
one has, in general, to simulate the model (or look at its analytic solution) for a
few representative values of the parameters and then make the comparison (see
Lin et al., 1973). On the other hand, if only small variations around some nominal
conditions are of interest, the analysis can be carried out by the first order
approximation sugpgested by the so-called sensitivity theory (see Rinaldi and
Soncini-Sessa, 1976 and 1978). Since this approach is quite efficient and elegant
it is now briefly presented and applied to the analysis of the Streeter-Phelps model.

Assume that a continuous, lumped parameter system is described by the
differential equation

k(1) = f(x(¢}, 0, 1) 4-1-9)

where 0 is a constant parameter with nominal value @ and let the initial state x,
of the system depend upon the parameter, i.e.,

X = Xy(0) (’-‘u = "u(m) {4-1-10)
The solution of Eq. (4-1-9) with the initial condition (4-1-10} is a function
x= X(!. 0]
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which, under very general conditions, can be expanded in series in the neighbor-
hood of the nominal value of the parameter, ie.,

x{r,0) = xi1) + [ax“' m]i(o -0+

a0

where %(t) = x{t,0) is the nominal solution. The vector [#x/30])s, namely the
derivative of the state vector with respect 1o the parameter, is called sensitivity
vector and will be denoted by s from now on, i.e.,

o-[5]

Thus, the perturbed solution of Eq. {4-1-9) can easily be obtained as
x(t,0) = k(1) + ()0 - 0)

once the sensitivity vector is known.

When there are many parameters #,,0,,...,8,, the knowledge of the sensitivity
veclors 8,,8,,...,5, allows the association of certain characteristics of the system
behavior with certain particular parameters. If, for example, the nominal solution
(1) of a first order system is the one shown in Fig. 4-1-5 where s,(t) and s5(1)
are the sensitivity coefficients of x with respect to two parameters 8, and 83, then
it is reasonable to say that the first parameter is responsible for the overshoot of
%, while the second is responsible for the asymptotic behavior of the system.
This characterization of the parameters turns out lo be very often of great
importance in the phase of the validation of the structure of the system.

It is easy to prove that the sensitivity vector s{r) satisfies the following vector
differential equation

ox

a8 5

. [ar(x,a, ')]is . [aﬂi.ﬂ-f) {4-1-11)

Figure 4-3-§ Nominal solution ¥ and sensitivily coefficients s, and s; ol a system.
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Sensitivity |
system |

Nominal i
system

P s
f:;::‘:,"v;y e Figure 4-146 Computation of the sensilivity

veclors.

with initial conditions

A

Thus, the sensitivity vector is the stale vector of system (4-1-11), called sensitivity
systent, which is always a linear system, even if system (4-1-9) is nonlinear. Because
of this property the sensitivity vectors can often be determined anatytically. In
any case, they can always be computed by means of simulation following the
scheme shown in Fig. 4-1-6.

This methodology is now applied to some very particular but interesting
sensitivity problems of river pollution. The model used is the steady state Streeter-
Phelps model (4-1-2) or some suilable modification of it. The reader interested in
the details of this analysis should refer to Rinaldi and Scncini-Sessa {1976, 1978).

S0) = ["_"“_L (4-1-12)

BOD Load Variation

Let us first analyze the eflects of a variation of the BOD load discharged at a
particular point into the river. By measuring flow time from this point the system
is described by

b= -kib
é= - kb + ke, - o)
and the initial conditions are (8 = 0)
by=1by +0 €o = Co
Thus, the sensitivity system is given by
Sy = — k5, {4-1-13a)
Se = —kySp — KaS, (4-1-13b)
and its initial conditions are

s{0) = [a:(;’l =1 s{0)=0
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4,

GfF—————-——————— ===

Cm\/-_

-
0 T -
-k, |
I

Figure 4-1-7 The sensitivily of dissolved
oxygen concentration with respect 1o BOD

load.

The solution of Eq. {4-1-13a) with s5,{0) = 1 is given by

sy =eM*

which can be introduced in Eq. {4-1-13b) together with s{0) = 0, thus giving

e"‘n' - e-—klt

(1) = ky S =k

The sensitivity coefficient s, given by Eq. (4-1-14) is always negative. Its behavior
is as shown in Fig. 4-1-7 and it has a minimum (see Eq. (4-1-8)) for

= Ina/ky) L
B kg-k| B v

This means that a positive perturbation of the BOD load in a point implies that
all the river downstream from that poinl becomes worse as far as its oxygen
content is concerned. Of course, this is the conclusion that can be derived from
the Streeter-Phelps model which does not represent a priori the behavior of a real
river. Indeed, it will be shown in Sec. 5-3 that because of the mechanisms of the
food web, it can be expecled that the conditions of the river are sometimes
improved by an increase of the BOD load (see also Sec. 10-5 for an interesting
example of the implications of this fact).

(4-1-14)

{4-1-15)

Equilibrium Temperature Variations

The influence of the temperature on the dissolved oxygen of a river will now be
discussed. In order to simplily the discussion a constant point source of BOD
on a perfectly clean and oxygenated river is assumed. Moreover, suppose that the
water temperature T is constant along the river (e.g. equal 1o the equilibrium
temperature, see Sec. 3-4). Thus, the upstream boundary conditions of the stretch
are given and depend upon the temperature T of the water since the oxygen
saturation level c, is a (decreasing) function of T. Under these assumptions, the
system is described by
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b= —k,(T)h (4-1-16a)
é= = k(T + ko(T)eT) = ¢) (4-1-16b)
with initial conditions
by = by co = {T)
The corresponding sensitivily system (4-1-11} is given by
Sp= = kySy — ki B
S = — K15y — kase — Iyb + (kae,) — k3E
with initial conditions
50=0 s{0)=c

where * denotes derivative with respect to T. and b and ¢ are the nominal
solutions of Eq. {4-1-16). The solution of the sensitivity system can be derived by
taking Eq. {4-1-3) into account and is given by

sp(t) = ~ kybar et
— klk'z - k'lkz 'y =hyt _ a— kgt
st} = ¢+ _—(kz — k[)z hyle e )

k I e M 1 . It
+E:'k—lb.,r(k',e LYo ke M)

From these expressions it follows that
540)= —kibo  s(e0) = 540) = ¢

Hence, since k) > 0 and ¢; < 0 (see Sec. 3-5), the DO sensitivily coefficient s, is
always characterized by the following three properties

5{0) <0 50 <0 S (o) <0

Two possible sensitivity curves s, are shown in Fig. 4-1-8, the first one (a) being
negative everywhere and the second one (b) showing that along a segment ol the
river (segment AB)(he conditions are improved by an increment of the (emperature.
A curve of type (b} would result if the reaeration coefficient should increase
drastically with temperature. Nevertheless, even under this hypothetical condition,
the dominant effect is a decrease of the dissolved oxygen concentration with
increasing temperature, and hence for reasons of salety, high temperature condi-
tions are often selected as the reference conditions in the design of wastewater
treatment plants or other river pollution conirol facilities. Actually, in these design
problems reference is usually made to low flow -high temperature conditions, since
similar results can also be proved for Nlow rate. The only difference is that the
sensitivity analysis should be done for the system describing sell-purification in
space, because Nlow velocity varies with Now rate (Rinaldi and Soncini-Sessa,
1978).
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('J‘

Figure 4-1-8 The sensitivily of dissolved oxygen concentration with respect to equilibrium
temperature.

Heat Discharge

As a final example, the effects that heat pollution has on the sell-purification

processes, as described by the Streeter-Phelps model, is discussed in very simple
terms.

The case studied is illustrated in Fig. 4-1-9a, where a river with flow rate @,
and temperature T3 receives a heat discharge with flow rate @, and temperature
(T2 + (01 + 02)/0:1ATo). Then, after mixing (at the point | =0) a flow rate
Q= 0, + @, and a temperature T, = T + AT, is obtained. The variation AT,
induced in the river by the heat discharge is the parameter and its nominal value
AT, is zero, thus meaning that the nominal conditions refer to the case in which
there is no heat discharge. Moreover, the BOD concentration of the discharge is
assumed to be the same as that of the river while both the river and the
discharge are assumed to be saturated with oxygen (see Sec. 7-2 for justification),
as shown in Fig. 4-1-9b, so that the initial conditions are

To=Td + AT,

) bt)=bl-l
S 1 o4 O ( 0 +Q )
(u_Qi“"ch"T“)*hQ:"'Q:(‘ L @: oXo

A thermal submodel must now be coupled with the Streeter-Phelps model
considered so far. Thus, assuming that water temperature dynamics can be
described by a differential equation (see Sec. 3-4), we obtain
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T = ¢{T) (4-1-17a)
y = — k,(T)b (4-1-17b}
e= = k(T + k(T cdT) - ¢) (4-1-17¢)
with initial nomina! conditions
7_-0-"-' v i’-u=bﬁ co = 6(T¢")
Thus, the sensitivity system is given by
Sr=4q'sr (4-1-18a)
3= — kibsy — ky5, (4-1-18b)
e = (= ki b + kye, + ko, — K3%)sy — kysp — kase (4-1-18¢)
Heat
Q,+0Q
@y T;"' IQ! : AT,
2, 0=0,+t0,
Ty I=0 To=To+ AT,
{a}
Heal
bV (T &t0 ATy
P
b by = by'
6 (Tg") 1=0 o,
= m g ( To‘)
Q, 0+ 0,
+ 0,+0, e, (To+ i ATy
5

Figure 4-1-9 Balance equations at the discharge point: (¢} flow rate and temperature (h) BOD and
DO.
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where ¢’ = {d¢/0T |7 and the initial conditions are
st0 =1  s0)=0 s0)=q

Equations (4-1-17) and (4-1-18) can easily be solved since they are of triangular
structure. If T = T;# is assumed to be a constant solution of Eq.{4-1-17a} this system
of equations can be solved analytically and the solution gives the three sensitivity
coefficients

sr= e"t

Sp = h bye ™Y1 —e*)

¢
Ss;c=Ae ™ 3+ Be M4 Ce*' ¢ De® -t £ et -t

where the constants A, B,.. ., E are given by

A= - b

o= kzk?:iﬁ' - l;(c:k+ rIr LR k.)tkk";kz— LT
D=[$1:ki_-_(l—%)k"]kz -il:+¢'

E= - Ui,

The corresponding sensitivity curves are shown in Fig. 4-1-10 for realistic values of
the parameters ; the main conclusion is that the oxygen concentration is lowered
everywhere and in particular around the minimum of the DO curve. However,
the perturbation introduced by the heat discharge is absorbed along the river,
this being the main distinction between this case of temperature perturbation and
the preceding one.

4-2 QTHER CHEMICAL MODELS

Since the first work of Streeter and Phelps, the process of natural self-purification
has been extensively studied and quite sophisticated mathematical models have
been proposed for its description. Most of them are basically the classical Streeter-
Phelps model with the source terms suitably modified in order to account for some
neglected biochemical phenomena. In all these models the river is assumed to be a
chemical reactor in which a reaction between BOD and DO takes place. Since this
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S
-
E-

Figure 4-1-10 Sensitivily coefficients of tem-
perature, BOD, and DO to heat discharge.

way of looking at the problem is the fundamental contribution of Streeter and
Phelps, these models are olten called madified Streeter-Phelps models.

As stated in the preceding section one of the hypotheses of Streeter and
Phelps is that the deoxygenation rate and the BOD decay rate are equal. This is
not always true. For example, the decay rale of the stream-borne BOD can be
higher than the deoxygenation rate because of sedimentation, or lower because of
resuspension. Consequently, Thomas (1948) proposed the foilowing equation for
the BOD decay rate

db
dr

where the new coefficient k; 2 0 takes into account lactors such as sedimentation,
Nocculation, scour, and resuspension.

Moreover, BOD is entering the river not only from point sources (effluents),
but also through distributed sources and local runoll. To account for these
distributed sources a term L{L1) (distributed BOD load) has been added by
Dobbins {1964} to the righthand side of the BOD equation, which then becomes
(recall that A is the cross-sectional area)

d

3!:"'”(;_!;: — (ky + k)b + l—-(:n
Again this equation can be written in Mlow time by defining the BOD load
L{r) along a characteristic line as (see Fig. 4-1-1 where t =t — 1)

L{z) = L{N2), (1))

I (k| + k;)b
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Thus, the BOD equation becomes

db L(r)
E— — (k, +k3)b+-7-
As far as the DO equation is concerned Camp (1963) and Dobbins {(1964) intro-
duced a constant term (P — R) giving

:—:= — kb +kyle, - )+ (P-R) (4-2-2)
which represents the difference between P the addition of oxygen due to photo-
synthetic production (assumed constant in time) and R the DO removal from
benthal oxygen demand. The new model can be considered as an ordinary Streeter-
Phelps model with a changed oxygen saturation concentration.

O’Connor (1967) proposed the use ol two independent terms P({,¢) and R{l,r)
1o represent oxygen production and oxygen removal, respectively, where P(l,r)
is assumed Lo be a periodic function of time. Moreover, O'Connor {1967) suggested
a more relevant modification of the classical Streeter-Phelps model which could
explain the existence of different phases appearing in the BOD decay (see Fig.
3-5-3). He assumed that the total BOD is the sum of two components, the
carbonaceous BOD (b,) and the nitrogeneous BOD (b,), thus writing

b="b,+0b,

(4-2-1)

In accordance with other authors (see, for instance, Gameson, 1959, and
Courchaine, 1963} he conjectures that the first two phases of the BOD decay
can be explained by assuming that the decomposition reactions for the two different
types of BOD proceed with different rates (k. and k, respectively) and that a time
lag. of increasing length for decreasing degree of treatmenl, separates these
reactions. This time lag could be explained either by an inhibition of carbonaceous
BOD over nitrogenous BOD, or by the low growth rate of nitrifiers (see Sec. 2-3).
Thus, for the particular case in which the time lag between the two reactions is
negligible, as it would be in a stream where all the BOD load comes [rom
biologically treated effluents, O'Connor’s model (in flow time) is the following

‘dﬁ.-_‘ - (kr + k.!}br
de

db,

5= - kb

de

el kb, — kb, + kale, — ¢) + Plr) - Rix)

where P(1) and R(t) represent oxygen production and removal along a charac-
teristic line. Obviously the nitrogenous BOD is assumed to be present in dissolved
form, since no sedimentation effect is considered in the second equation.

in order to improve the fit 1o observed data, some authors proposed models
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with nonlinear source terms. First, on the basis of a suggestion given by Thomas
(1953), Young and Clark (1965) proposed a second order reaction equation to
model the BOD decay (see Eq. (3-5-12))
db
—=—0,h?
dr !
Later on Braun and Berthouex (1970) proposed a Michaclis-Menten expression
(see Eq. (3-5-17)) for the BOD decay rate:
db b
ot R4 1. - b
a 0, + b [Bn + 05(by n
where the bacterial biomass B(r) = [B., + 04{by — b(r))] is assumed 10 be a linear
function of the excerpted BOD. This model has been proved 1o be of particular
interest when the BOD data show an initial lag phase (see Fig. 4-2-1).
Following the chemical engineering tradition, Shastry et al. {1975) suggested
modeling the deoxygenation process as a second order reaction where the reaction
rale is proportional to the concentration of the two reactants (see Eq.(3-5-11))

db

— = — 0,b¢ {4-2-3a)
dr
dc
d‘l-' = i "|b(' + 02((‘, = (') (4'2'3bl

Rinaldi and Soncini-Sessa {1974) have shown why this equation can be of particular

A\ Braun and Berthouex
" N model
N
\ LY
6
g
g st
= Strecter and Phelps
@ 4 model
N
3 N
z -
1~ Figure 4-2-1 Comparison ol
BOD decay profiles of the Braun
1 1 1 1 1 = and Berthouex model and the

Streeter-Phelps model on
t(d) |aboratory data.
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interest, System (4-2-3) is a nonlinear system of the form
x =1{(x,u)
and is still characterized by the unique equilibrium point
x=[0 ]

since X = 0 implies b = 0 and ¢ = ¢,. Moreover, the linearized system associated
with this equilibrium point is given by (see Sec. 1-2)

o ar _OICA 0
ox = l_ﬁ;]ﬂiéx = |>_0m 01]61&

Letting 0, = k,/c,, 02 = k3 the matrix [/x]. =g is equal to the F matrix of the
Strecter-Phelps model. Then, it can be concluded that the two models have the
same behavior in the vicinity of the equilibrium point. Nevertheless, model (4-2-3)
never generates negative DO concentrations as the Streeter-Phelps model does
(see Fig. 4-2-2).

In any one of these modified Streeter-Phelps models, the steady state DO
concentration profile is a sag curve. In particular, for a Dobbins' model (see
Egs. (¢-2-1){4-2-2)) with L(z) = const., Liecbman and Loucks (1966) have proved
that the critical deficit d. is again a nonlinear function of the initial BOD and DO
concentrations, while the limit position (b, — o or ¢y — ¢5) for the critical point
Iis

vin f
ky +k)(f = 1)

with ([ = ka/(k, + k3)} (see Sec. 4-1). However, the limit position L. is no longer
an upper bound of 1, rather the critical point is located upstream from the point

L

4

[

Nonlinear
model

Streeter-Phelps
model

Figure 4-2-2 Comparison of DO sag curves of the Strecier-Phelps model and the nonlincar model
4-2-1).
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L. if the distributed BOD load L satisfies the following relationship

L ki +k
y < . {P — R+ kady)
and downstream [rom the point L, if the opposite inequality holds.

Nusmerous particular problems, such as photosynthetic oxygen productidh,
eflects of time-varying distributed BOD load, effects of constant BOD load
discharged in an oscillating flow, DO deficit due 1o unsteady point sources of
BOD have been extensively discussed in the literature {see, for instance, Di Toro
and O'Connor, 1968 ; O'Connor and Di Toro, 1970; Li, 1972; Li and Kozlowski,
1974 ; and Rinaldi and Soncini-Sessa, 1974). The first two problems mentioned are
discussed in this section in greater detail, not only because they are of a certain
interest per se, but also to show how different mathematical techniques can usefully
be applied to gain insights into model behavior. In both cases temperature, flow
rate, and velocity are assumed to be constant in time and space in order to simplify
the discussion.

Photosynthetic Oxygen Production

Downstream from the effluent of a biological treatment plant it is often observed
that the growth of benthic algae is stimulated by the nutrients contained in the
treated wastewater. The algae may acl as both a source and a sink of oxygen,
owing to photosynthetic oxygen production and respiration. For the sake of
simplicity, the spatial distribution of the algal population is assumed to begin
abruptly at | = Oand to remain constant for [ > 0. Then, the photosynthetic oxygen
production P and the oxygen removal R due to algal respiration are constant in
space for | > 0. Moreover, it can reasonably be assumed that the respiration R is
time-invariant, while the photosynthetic oxygen production P varies in the same
way as the incident solar radiation (Westlake, 1968). Thus, the oxygen source term
P(t) — R can be assumed to be periodic and to have the shape shown in
Fig. 4-2-3 (O’Connor and Di Toro, 1970). In other words,

Pty - R=P — R + 8P(n

where P is the mean value of P(1) and 8P(r) is a periodic function with zero mean
and period T = 2n/w, = | day. Il sedimentation eflects are negligible, the modified
Streeter-Phelps model describing the phenomenon is

@ + a—-b = -kb

alET T S
c de =

E+v_{ii= kb + kale, — )+ P - R+ 6P(1) (4-2-4b)

Inorder to solve these equations easily assume lime-invariant boundary conditions
(b(0,1) = by and (0, 1) = c,). Obviously the solution of Eq. (4-2-4a) is the same as
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T
§ P-R+6P(r)
| NP N
A — I
R t
T=2n/G)
1 day

Figure 4-2-3 ldealized daily Auctuations of photosynthetic oxygen produclion.

that of Eq. (4-1-1a)
bil,1) = by (4-2-5)

As far as the dissolved oxygen is concerned, let us assume that it can be written
in the form

cll, 1) = &) + oclr) (4-2-6)

with dc(t) being a periodic lunction with zero mean. The validity of this assumption
is now verified by actually determining the functions ¢{/) and dc(t} in such a way
that Eq. (4-2-6) is a solution of Eq. (4-2-4b). By substituting Eq. {4-2-6) into Eq.
(4-2-4b)
. dé(l) - B

deft) + v =" kib+ kyfc, = &) = kybe(t) + P - R+ 6P(1)  (4-2-7)
is obtained. Thus, averaging this equation over the period of one day and
remembering that 6P(t) and dc(r) have zero mean yields

u‘%b —kyb + kylc,— &) + P— R (4-2-8)
which is of type (4-2-2). This equation can be explicitly integrated, using Eq. (4-2-5)
and the boundary condition §0) = c, (see page 116). The asymptotic value of
&(h (note that system (4-2-8) is an asymptotically stable linear system since its
cigenvalue is —kj), is
P-R
k»

ie., in points relatively far downstream from the discharge point oversaturated
oxygen values are on the average obtained. Substituting Eq. (4-2-8) into Eq. (4-2-T}

8¢{t) = — ke + SPY) (4-2-9)

- cs +

is obtained, which has a unique periodic solution for each periodic function’
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Im {M)

@ = oo ]Ik/‘”-o
Re (M}

Figure 4-2-4 The DO frequency response lo a
o=k, uniformly distributed oxygen source.

3P(1). This periodic solution can easily be obtained by developing the input éP(r)
in a Fourier series (a sum of sine waves) and by determining the corresponding
series of dc via [requency response. The transfer function M(s) of system (4-2-9) is
given by (see Eq. (1-2-13))

Mi(s) =

S+k1

and the corresponding lrequency response is shown in Fig. 4-2-4 (see Eq. (1-2-18)).
Note that | M(iw)| is a decreasing function of w, ie, the river is acting as a low
pass filter since high frequency components of 6P(t) (w > k,) are attenuated. Re-
calling Eq. (4-2-6) it can be concluded that, in the presence of algal population,
the classical shape of the dissolved oxygen concentration may slill be observed at
any instant of time and that the whole sag curve has a diurnal fluctuation around
the daily mean concentration &(j).

Distributed BOD Load

In this second particular case the effects induced by a time-varying distributed

BOD load are analyzed. Again, for the sake of simplicity, it is assumed that down-

stream of the initial point ! = 0 the distributed BOD load is constant in space

(L{l,1) = L(r)) and that at the initial time ¢ = O the river is perflectly clean and

oxygenated (b(1,0) = d(l,0) = 0}, while at the initial point b(0,1) = 0 for r > 0.
The following equations may be used to describe this situation:

db db L(r})

E+UE= —k|b+7 {4-2-10a)
ol ad
ot = kb —kud (4-2-10b)

Even il Lit) is a periodic function, Eq. (4-2-10) can no longer be integrated as in
the preceding case, since the form of ¢(},t) is now more complex. The notion of
transfer function can now be of greater help. Applying the Laplace transformation
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1 (.,_ B{l %)
A{s+ k) =

L] o -kyits gt

Figure 4-2-5 Block diagram of the transfer funclion between a uniformly distribuled BOD load
Lit) and the BOD concentration b(l, 1) at a given point 1.

to Eq. (4-2-10a) gives (recall that b(/,0) = 0)

sB(l,s) + vng”s] = — k,Bils) + % @-2-11)

where B{l,s} and L(s) are the Laplace transforms of b(l,1) and L(t}, respectively.
Equation (4-2-11) is an ordinary linear differential equation which gives

—_ E‘j‘_ﬂ —_ __I__ — a~kiir o=l

M(s) = I6) ~ A + k1) (1—e | {4-2-12)

where M {s) is the transfer function between the distributed BOD load and the

BOD concentration at a given point I. The block diagram corresponding to this

transler function is shown in Fig. 4-2-5, while the corresponding [requency response

M{iw) is shown in Fig. 4-2-6, which shows that the river is again acting as a

low pass filter.

Itis interesting to note that, if the variations of the load are purely sinusoidal,

i.e, Lit) = L + AL sin (wyt), the amplitude and phase of the induced BOD {luctua-

tions are functions of ! (see the second block in Fig. 4-2-5). Therefore, this

phenomenon is more complex than the photosynthetic oxygen production, where

the DO fuctuations were independent of I. Moreover, in this case there are

points at which the amplitude of the fluctuation reaches a maximum and points

Im (M)

) = oo
w=0
Re (M)

Figure 4.2-6 The BOD [requency tesponse lo a
uniformly distributed load
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X +k1 T s -
+1-
Lo [~ % DOS) [~ kytie g-stn]—at ™ D4LS)
A kyk) ’,‘, —
- -:-k I+ ky~k B(is)
. ~kybte o ~3ite - nk,

1 e

Figure 4-2-7 Block diagram of the transfer function between a uniformly distributed BOD lond
Lir) and the DO deficit at a given point.

at which it has a minimum. The coordinates ol these points can easily be computed
by letting the derivative of | M (iw)| with respect to / be zero

k,cos (wo 5) + (g SiD (wu l—,,) —kjetir=0

The funclion k, ¢ “*"" tends to zero for increasing values of !, so thal, for parts of
the river sufficiently downstream, the points characterized by maximum and
minimum Nuctuations are equally spaced.

Applying the same procedure to Eq. (4-2-10b) as to Eq. (4-2-10a) the following
is obtained

k ] — e'-l,ll'l' c"!lh- l - eTl!"" e llfl"I .
= g~ kyllv p—3llv UKy . Lis
D(LS) e D(O!S)+A(kz*k|)[ S+k1 $+k2 . (‘)
where D(l, s) and D{0, 5) are the Laplace transforms of the deficit d(f,r) and of the
boundary deficit (0, r}. The block diagram corresponding to the preceding expres-
sion is shown in Fig. 4-2-7. Again, il is possible to show thal particular points
exist at which DO MNuctuations reach maximum and minimum values.

Sensitivity Analysis

Finally, it will now be shown how important information on the model behavior
can be obtained by employing the simple sensitivity analysis technique presented
in the preceding section. Consider, for instance, computing the variations of DO
concentration due to an increase in the benthic algal population considered on
page 111. This information can easily be obtained by delermining the sensitivity
of Eq. (4-2-8) with respect to the parameter (P - R), since the main consequence
of the population increase is a corresponding increase in this parameter.
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The sensitivity system associated with Eq. (4-2-8) is
ds.()
dl

If the initial DO concentration ¢, is not affected by the algal bloom (s.(0) = 0)
the solution of Eq. (4-2-13) is

v = —kas.(h+ 1 {4-2-13)

sdl) =:le“ —emhi)

which is represented in Fig. 4-2-8. The conclusion follows that the alga! bloom
induces a general improvement of the daily mean DO concentration, and that the
greatest effects appear lar downstream of the BOD source.

As a second example, consider now the case in which the effluent at [ =0
contains some non-biodegradable surfactants. These substances do affect the re-
aeration process so that when they are present the reaeration coefficient k; has
values which are lower than the normal ones. Thus, the effect of the removal of
the surfactants from the wastewater discharge can be analyzed by determining
the DO sensitivity with respect to the reaeration coefficient k;. Using Eq. (4-2-8)
once more, the sensitivity system turns out to be

,,d-‘ég" = — kys{l} + (¢, — &) (4-2-14)
where
SN = u_ . ﬁ_R_— -k lfe
ch=c+ o (t., + P r.,) e
+ . k|b‘;‘ (c-lll,rr - e-l,lfl')
1 — K2

is the nominal average DO concentration. Integrating Eq. {4-2-14) with the initial
condition 5.(0) =0 (the initial DO level cannot depend upon the surfactant
contents of the wastewater discharge), the following equation is obtained

B P-R kibu 11 e
se(l) = [(cs + % q.) + — k;]vc

kiby — ki =kyltoy _ P-R
L

+ (1 — et

Srj

WVkf———fm——— === ===~ — -

|

I Figure 4-2-8 Sensitivity coefficient of
! dissolved oxygen with respect to aver-
vrky { agepholosynihetic oxygen production.

4-3 APPROXIMATED STREETER-PHELPS DISPERSION MODELS 117

Sc

Se
]
(F-R) —

T - 7
{a) %

(c)

Figure 4-2-9 Sensitivily coeflicient of dissolved oxygen with respect 10 I1he reacration coefficient k;:
{a}) when photosynthetic oxygen production is dominant {7 > R)

(b) in absence of sources and sinks of oxygen (P = R)

{¢c) when benthal oxygen demand is dominant {P < R).

Figure 4-2-9 shows three typical profiles of s5.(f) for different values of the oxygen
source (P — R): positive value (predominance of photosynthetic oxygen produc-
tion), zero value (absence of sources and sinks), negative value (predominance of
benthal oxygen demand). In all cases, the removal of the surfactanis generates
an improvement in the DO concentration immediately downstream of the dis-
charge. Nevertheless, il photosynthesis predominates, the DO concentration can
decrease downstream. This singular phenomenon can be better understood by
remembering that, for high values of [, algae create oversaturated DO concentra-
tions. Then, il the oxygen interchange between air and water is improved, lower
oversaturation values will be obtained.

4-3 APPROXIMATED STREETFR-PHELPS DISPERSION
MODELS

The aim of this section is 10 present BOD-DO models which to some extent
take dispersion into account. More precisely, dispersion models are analyzed
both in the steady state and in the unsteady state case and, finally, simple lumped
parameter models are derived which can be interpreted as approximations of the
general dispersion mode),

The Streeter-Phelps model with dispersion can be wrilten in the form {see Secs.
3-1 and 4-1)

a6 b b

-D

a—'+ﬂﬁ FF-= —k|b (4-3-'3)
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9‘1 + v @ D az_d
a al ar
if the cross-sectional area A and the dispersion coefficient D do not depend on I, and
if there is no BOD load along the river (recall that d is the DO deficit). The
analysis which follows makes reference to this model, but other chemical models

like the ones described in Sec. 4-2 could be discussed along the same lines.

Equation (4-3-1) can be simplified by defining the auxiliary variable
ky

a=4d + m b (4-3-2)

= kb —kod (4-3-1b)

since from Eq. (4-3-1)

da, 2a_pda_

o Al TarT
is obtained. Therefore, once Eq. (4-3-1a) has been analytically solved, the solution
a = a(l,t) can immediately be obtained by replacing k, with k3, and hence the
solution of the DO deficit equation can be deduced from Eq. (4-3-2).

- kzﬂ

Steady State Analysis

For steady state conditions the following BOD dispersion model is obtained by
splitting the second order differential equation (4-3-1a) with db/dt = O into the two
first order equations

oh
= # (4-1-3a)

ﬂﬂ kl v
= = 4-3-3b
35=D b+ D f (4-3-3b)
while the corresponding plug flow model {D = 0) is simply

b ky

= b (4-3-4)

Model (4-3-3) is a simple linear model of the form

dx(l)
. a1 = Fx(}

with

bih) 0
x(l) = F=1x

1
Ll
ph D D
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The eigenvalues of the matrix F are given by

kD
A,=21D(1+ /|+4-':T) A,=210(1— 1+4"_;£)

and the corresponding eigenvectors are

e-fl] e[l

Recalling that any eigenvector x* is, by definition, a vector such that Fx* = 1x",
then if the state x{/) of the system in a point [ is given by x*", dx(N)/dl = L,;x(D),
i.e., the tangent to the trajectory describing the evolution of the state vector in the
stale space is proportional to the vector itself. This implies that in the state space
there are two particular straight lines through the origin which correspond to
trajectories of the system. The trajectory corresponding to x'"! is directed away
from the origin since 4, > 0, while the trajeclory corresponding to x'2! is directed
toward the origin since A; < 0. Thus, the evolution of BOD {b) and its gradient
{mn alc?ng the river is that of a sad:dle point in state space as shown in Fig. 4-3-1.
Since there is no BOD load downstream of the initial point (/ = 0)

Jim bih =

must hold, and this can be obtained if and only if the initial state is proportional to
the second eigenvector, i.e., il and only il

@) = 2.b(0)

Slope ll

\ 0
P

Slope X,

Figure 4-3-1 Trajectories in the state space (b, fi).
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which implies

At = 2,bh (4-3-5)
for all { > 0. Thus, from Eqs. (4-3-3a) and (4-3-5)
ab
i b (4-3-6)

is obtained, and by comparing Eq. (4-3-6) with Eq. (4-3-4) the following con-
clusions can be drawn: the plug Now model (4-3-4) can be used as an equivalent
dispersion model under the condition that the stream velocity v is substituted by
an equivalent flow velocity v, such that A; = - k,/v,. This equivalent velocity v,

/ 1‘5.!_.__1

and justifies Dobbins’ criterion (Dobbins, 1964) which says that if 2(k,D/v?) is
smaller than 14, the effect of dispersion is negligible. Similarly, for the auxiliary
variable a given by Eq. (4-3-2) an equivalent velocity can be defined

2
by 2k,Dfv (] + 2k;D)

fl+4kD i
v

In conclusion, as far as steady state conditions are concerned the dispersion
model {4-3-1) has an equivalent plug low model given by

b
Ulﬁi—

ad k,
V25 = Py fn(v k, -k )b-— kyd

where the velocities v, and v, depend upon the dispersion coefficient D. The
equivalent plug Now model given by Eq. (4-3-7) can be used to analyze steady
state situations, since it is much simpler than the dispersion model (4-3-1) with
obfir = ddfor =

— kb
@3-

Unsfeady State Analysis

To obtain approximalte dispersion models the dispersion model (4-3-1) is analyzed
via transfer function techniques. Lel

B(l.s) = L[bi1)]

be the Laplace transform of b(, r) with respect to time. Then the Laplace transform
ol Eq. (4-3-1a) is given by
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dB d*B
sB~ b(lO)+vd' DEF———-k.B (4-3-8)

with boundary conditions
B(0, 5} = Bo(s){ = £[bo(0)])
lim B(l,5) =0

(BN ]

In order to compute the transfer function of the system it is necessary to assume
that the initial conditions are zero (see Sec. 1-2), ie,,

bLOY=10 forall i

Then, the second order differential equation (4-3-8) can be split into the following
two first order differential equations

C.I.B =f

Bk {4-3-9)
_atsgp. v

(-i? =D B+ D”

which are formally similar 10 Eq. (4-3-3). From the preceding results and
Eq. (4-3-9) the following is obtained

dB
di

3= 2 {1~ [14qtatsl
;.3(5)_2‘9(1 14+4= )

Therefore, the Laplace transform of b{/, 1) at point ! can be written as
B(l, 5) = By(s) ets!

and the transfer function M,(s) specilying the input -output relationship between
bu(r) and b(l, 1) is given by

M:(s):g,m:,__e;;('—\/l+4“‘- ::JID)

Its inverse, which is the impulse response (see Sec. 1-2), is

= J,(5}B

where

|
1 =¥z -m‘u—m‘-k.n
mitl==- ——¢

2 /Dn

It should be noted, however, that in reality the input function bo(t) can never be an
impulse function. Even if a BOD impulse is discharged at | = 0, dispersion will

{4-3-10)
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cause by(t) to be a function which dies away relatively slowly. But for sufficiently
large I expression (4-3-10) is a good approximation to the pollution distribution
induced by a BOD impulse discharge.

Il a stretch of the river composed of a sequence of n equal reaches of length
L/n is considered its transfer function can be written as

Mis) = [m(s)]" = [Myp(s)]®

i) m a1 i BEE)

is the transfer function of each reach. Figure 4-3-2 shows the stret= of the river,
the n reaches and the corresponding block diagram representation.

The structure of this model is exactly the same as that of the Nash model
described in Sec. 3-3. This similarity suggests to approximate the transfer function
mfs) of each reach by means of a simple transfer function of the form pf(1 + Ts)
in order to obtain n serially connected first order lumped parameter models for the
whole river stretch. The static gain p and the time constant T can be selected in
many different ways, but if the transfer function m(s) is written in the form

m(0)

where

m(s) =

Lin 1 Lfn Lin 2D R
1+ S+ = -5 s34
VU +akD 2. /vt +dk D\ /v? +dk,D v+ 4kD
L -
L/n
by b
Reach 1

[ 1
ﬁ“— M(S) -b-l- m(’) L [ —-ﬂ:—l-‘- ﬂ'l(s) Ibﬂ(-b(L!))
| =
| |
et M,(5) -————

Figore 432 Subdivision of a streich of river into n reaches and corresponding block diagram
representation.
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the most natural approximation, called low frequency approximation because it
approximates the frequency response of the system (see Sec. 1-2) at low values of
the frequency s = iw, is given by
m(0)
Lin
4k,D

l’2

mis} =
1+
v {1+

Assuming that 2k, Dfv? « |, this expression can be further modified 1o give
m{0)
Lin
] i -
+ k,D 5
sl 42—
v

Similarly, the gain m(0} can be approximated by

mis) =

[t}

() R —
i) T
The approximate dispersion mode! can then be written as
Bi(s} = b B
S = 1+ Ts i-1(s)
"
Ails) = T+ T's A (s) (4-3-11)
Dy(s) = Ai(s) - ki p
WS} = Ay k, —k_z i(s)
where
v Lin
= — T=
+ kL
S v(l +2%02
v
. v , Lin

= T'=
+ koL
v+ kel/n v(!+2-k:—zo‘

and Bi(s), Ai(s) and Dj(s) are the Laplace transforms of the BOD, of the auxiliary
variable a(r}, and of the DO deficit, respectively, at the downstream end of the
i-th reach. Equation (4-3-11) completely specifies the BOD-DO deficit dynamics
of the dispersion model in terms of transfer functions.

It is interesting to note that this approximate dispersion model has the same
structure as the so-called CSTR (Continuously Stirred Tank Reactor) model
heuristically proposed by Young and Beck (1974) who joined together two of the
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most well known simplifying assumptions from hydrology and from chemical
engineering. The first consists of imagining the river to be cons_tituled by a
sequence of pools {the reaches), and the second corresponds to assuming that each
pool is a perfectly mixed reactor. Thus, the mass balance for a single reach (i) of
length L/n gives

5 [/} v
bl = - (k. + r/,-') hn) + Lin by (1)

alny = - (k, + L';;) ait) + L—';"aa. 10)
v v
L—/")d,(t) + Tradier(0

The transfer lunction representation of the CSTR model is

ddi) = kybit) - (kz +

B(s) = IL B, 4(s)

+ Ts
2 4-3-12
Al(s} - l + T,s Ai" l‘s’ ( }
—a Y1 Bs)
Dis) = Ai(s) - R ils
where
v Lin
e = ——= {= i) 1=
v+ kLin v 1+"IL—I/,"
v . Lin
po=———r (=) T'=
v+ kyLin ot +k, Lin

=
If the number a of reaches could be chosen such that

2D
Lin=~

then the following would be oblained

- T=T T%=T
i.e.. the transfer function of the CSTR model would be the same as that of the
approximate dispersion model. However, il L/n > 2D/v, as is usually lhe' case,
T. < Tand T! < T'. Thus, it is necessary 1o add a time delay between the adjacent

reaches to obtain the same wave propagation velocities (see Sec. 3-3) in both
models. The transfer function representation of the CST R madel with time deluy A

is simply
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Bys) = %‘g e % By_y(s)

Afls) = ﬁ;—.se‘“m.-.(s) (4-3-13)

k
Dis) = Ads) = =1 Bils)

and in the time domain the model is described by the following differential
equations (see Young and Beck, 1974)

5 ] v
biit) = - (kl + m)b;(r) + i7ll by it - A)

{4-3-14)
J!(') = kby(t) - (kz +LL/")‘MI) + Li'lnd‘_ ot — 4)

Choice of the pure time delay A as
A=T-T,

results in the same wave propagation velocities for the BOD peak in the CSTR
model with time delay and in the approximate dispersion model. The CSTR
model with time delay can be interpreted as a model describing a river constituted
by a sequence of channels and pools, where the biochemical reactions take place
only in the pools. Figure 4-3-3 shows the schematic diagram of a single reach of
such a river.

If the channels are described by mere complex transfer functions taking into
account the BOD-DO reactions and the dispersion in the channel, the lollowing

—i
by
—riie.
di-) _
Channel ) /
4 _g...'—"-
b;
S
dj
Pool

Figure 4-3-3 Schematic diagram of the CSTR model with time delay.
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model is obiained

Bish= 5 _:“ﬁm(sm,_ ()

He
l Iy T;s ‘P(S)A;- |‘5) ‘4 3 ]5)

Als) =

k
Dis) = Ais) = - o Bils)

where ®(s) is the transler function of the channel for BOD and ¥(s) is the one for
the auxiliary variable. In the lime domain the model {4-3-15) can be writien as

v e [
hin = - (k, + E,") bt + v L dloby lr - 1) dr

din = kybift) (k; + ,—_E-)di") (4-3-16)
/n
+ s [I Yl lr = 1) dr +I oy (e - r)dr-l
Llll " 1 a
where

#in = k._k-ch, (¥tr) - ¢lv))

and ¢ and ¢ are the antitransforms of @ and ‘¥, i.e., the impulse responses of the
channel. This is the continuous-time version of the distributed-lug model heuristic-
ally proposed by Tamura (1974). In this model the river is interpreted as a
sequence of channels and pools, and the impulse responses of the channels
representing biochemical reactions and distributed-time-delays due to the disper-
sion in the channel, should appear as shown in Fig. 4-3-4.

The BOD impulse responses of the dispersion model, the approximate
dispersion model, the CSTR model, and the CSTR model with time delay are
plotted for comparison in Fig. 4-3-5. For the dispersion model {4-3-10) the arrival
time of the peak is not exactly an integer multiple of T as shown in Fig. (4-3-5a), but
for { » 3Dj/v this is true approximately. For the distributed-lag model it is possible

$(1)

/\ Figure 434 Impulse response for a channel of the

0 1 distributed lag model.
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Figure 4-35 BOD impulse re-
sponses for three river reaches:
{a) dispersion model (b) approxi-
mate dispersion mode! {c) CSTR
model {d) CSTR model with time
delay.

1o obtain impulse responses which are as close as desired i i
I toth f

mod;l by suitably selecting ¢{1) and ¥(z). © thoseofthe dispersion

inally, the general block diagram of all the models di in thi i
_ y, th ! iscussed in this section
is shm:vn in Fig. 4-3-6, where m{s) is the BOD transler function in each reach
and m (s)is the.lransl'er function lor the auxiliary variable. The specific forms of
mis) (gain and time conslant) are summarized and compared in Table 4-3-1.
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Figure 4-3-6 Block diagram of the » reach river model.

In conclusion, when the vaiue of the dispersion coefficient D of a river is
known, Dobbins’ criterion can be used to decide whether 1o take dispersion into
account or not. If the answer is positive, the plug Now model with modified
velocities can be used as a simple and accurate steady state model, while models
(4-3-11, 4-3-12, 4-3-13, 4-3-15) can be used for real time state estimation and
control (see Sec. 5-4, 5-5 and 9-3, 9-4). When the value of the dispersion coefficient
D is unknown, in general it is necessary to estimate the parameters of one of the
models discussed, a procedure considered in Secs. 5-4 and 5-5.

Table 4-3-1 Comparison of approximated Streeter-Phelps models with dispersion
(BOD equation)

Transler lunction Gain
Model mis) m{0) Time constant
Dispersion gl giHPHe
. S [ v. . R
Approximate dispersion 1+ T n= et kL T v(l N l'k_.D)
]
S ' Lin
; b i e It L A
CSTR with time delay T TS M T T “Lin
! vl 1 +k,—
)
S Lin
e = =
Distributed lng e {5} 1P T.= T
VT v(l+k. "'-')
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As already mentioned in Sec. 3-5 (see Fig. 3-5-4), shemical models, like the Streeter-
Phelps model, may be unsatisfactory due 1o their gross simplifications. These
models are problematic, in particular, for investigations anticipating future changes
of the wastewater load since the change in parameters cannot be predicted on a
theoretical basis. On the other hand, detailed ecological models can avoid this
preblem, but the parameters involved are hard to estimate, because the necessary
measurement effort is tremendous.

Inthe following, an ecological mode! is described which is simple enough to be
identified with reasonable measurement effort and which is believed to be more
realistic than the Streeter-Phelps model for a certain class of rivers (Stehfest, 1973).
Beside the assumptions of vertical and lateral homogeneity (see Sec. 3-1), which
are made throughout the main part of the book, the lollowing assumptions have
to be made for this model

1. river depth and velocity are high
2. longitudinal dispersion can be neglected

3. the river is heavily polluted

The first assumption implies that benthic variables can be neglected, for two
reasons. First, sediments and benthic organisms can hardly develop because of
the high stream velocity. Second, even if they do, their importance relative to the
stream-borne organisms and pollutants will be small, because the water column
above the river bottom is high. The latter argument is particularly applicable
because the biochemical activity within bottom deposits is relatively small due to
the slow materiat exchange. The insignificance of the benthic variables means
that the model consists of equations of lype (3-1-16) only (with nonvanishing
vand D}. If, in addition, the diffusion terms can be neglected {assumption 2) the
model can be transformed into a system of ordinary differential equations (see
Sec. 3-1). Assumption 2 is only made in order to simplily the following discussion,
which is focused on the biochemical aspects. Little change would be required if
longitudinal dispersion were to be taken into account in one of the ways described
in Sec. 4-3. Assumption 3, in connection with assumption , further simplifies
the model. The higher organisms of the food web can be neglected because they
are fairly exacting, and because their reproduction time is usually comparable to
the flow time (see Sec. 2-3). Nitrification and photosynthesis may be neglected
for the same reasons. The development of photosynthesizing organisms is in
addition hindered by the low mean light intensity, which is due to the great depth
and the high turbidity. A river for which the preceding assumptions seem to be
approximately fulfilled is the Rhine river in Germany; and in facl, this is the river
for which the model was first developed (see Sec. 5-3).
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On the basis of the simplifying assumptions the following state variables were
selected :

w, = easily degradable poliutants
w, = slowly degradable pollutants
B = bacleria

P = protozoa

¢ = oxygen

All variables are defined as mass densities, the pollutants are measured by their
chemical oxygen demand (see Sec. 3-5), and hence w, + w, is the biochemical
oxygen demand of the pollutants. (The BOD ol a water sample, however, also
comprises the biochemical oxygen demand of the living matter.) The aggregation
ofall bacterial and protozoan species into two variables has already been discussed
in Sec. 3-5. [t is, in any case, more justified than dealing with all pollutants as
one variable, because the differences between the pollutants with regard to
degradability are certainly larger than the differences among the bacteria or
protozoa with regard to growth rate or endogenous respiration.
The model equations chosen are:

Wy =—kyu B+ L, {4-4-1a)
W= —kyunB+ L, (4-4-1b})
B =g, + g2 - kse)B - kyygisP (4-4-1¢)
= (g3 — ka3)P {4-4-1d)
¢ =ksyle, = €) ~ (ksagy + kasgs + kea)B — (kysgs + ksg)P  {4-4-1¢)
with
kyiw _ kayw, kuB
Nt w Pl rwthkowy P Tk +B

All ks are posilive parameters, while L, and L, are pollutant inputs. Obviously,
the model is given with low time as an independent variable (see Sec. 3-1). If it is
assumed that there are no flows of material other than those shown in Fig. 4-4-1
{i.e. flows resulting from sedimentation or from interactions of protozoa
and bacteria with higher levels in the food web are neglecied) then, the three
following relationships can be established between the parameters (see the
anatogous Eq. (3-5-20))

- kq4
ku—k“ ksz
k
i, = ka ks
kiﬁ ku
Y T
’C‘; kJﬁ ar LH]
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However, if the parameters are considered 1o be independent these relationships
may be used as a test for the estimation results (see Chnpler 5). All relationships
contained in Eq. (4-4-1} have already been discussed in Sec. 3-5. For the easily
degradable pollutants the Michuelis-Menten degradation kinetics is assumed (Eq.
(4-4-1a)), while for the degradation of the slowly degradable pollutants a com-
petitive inhibition through the easily degradable pollutants is postulated. The latter
assertion is justified by the fact that many enzymes which catalyze the degradation
of slowly degradable matter are only formed afier the more easily degradable
substances have been used up (see Sec. 2-3). Of course, it is not mandatory to use
the expression for compelitive rather than allosteric inhibition. But it may be
argued that for high concentrations of slowly degradable matter bacteria
specialized on this matter become abundant, so that the inhibition can be over-
come 1o a certain extent; this effect cannot be described by Eq. (3-5-22) lor
allosteric inhibition. The terms on the righthand side of Eq. (4-4-1c) stand for
increase of bacterial mass by degradation activity, and loss of bacterial mass by
endogenous respiration and protozoan predation. Equation (4-4-1d) describes the
variation of the protozoan mass as the difference between growth due to digestion
of bacteria and endogenous respiration. The latter term with an appropriate
parameter value k.3 may, in addition, approximately account for losses of
protozoan mass through predation of higher organisms. Finally, the impacts of the
processes just mentioned on the oxygen budget are listed in Eq. (4-4-1¢) together
with the term for physical reaeration. The structure of the model is shown in
Fig. 4-4-1. The compartments correspond to the variables, and the arrows to the
flows of material. The slanted lines indicate the surroundings of the river.

Model (4-4-1) contains quite a number of parameters which cannot be deter-
mined scparalely, cither through experimentation or through theoretical con-
siderations. The reaeration coefficient ks, for example, cannot be determined

G el

Dissolved
oxygen

Easily

=z NS

Bacteria Protozos
Slowly /
o= degradable

matler

Figure 4-4-1 Structure of the ecological river quality model (4-4-1).
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theoretically at sufficient accuracy, as discussed in Sec. 3-5. And il cannot be
measured separately, {except for particular cases, see Churchill et al, 1962),
because the reaeralion process is always superimposed upon the biochemical
oxygen consumption processes. Hence, the paramelers have to be determined,
in general, simultaneously from in situ measurements of the model variables.
Various methods of solving this problem are discussed in Chapter 5. Even now,
however, it should be intuitively clear that to determine the many parameters
of Eq. (4-4-1) it is essential to have accurate measurements of as many variables
as possible along the river. The least problematic variable in this respect is oxygen
concentration, since it can easily be measured with high accuracy. For the measure-
ment of prolozoan mass, however, the only well established method is to determine
microscopically number and size of the protozoa, which is rather expensive and
not toc accurate. For the bacterial mass a similar method could be used, while
the traditional plate count (counting the number of colonies developing on a
standardized culture medium) is too inaccurate. Another technique, which is not
yel widely used, however, consists of measuring the total living biomass through
a typical constituent of living matier, for instance, ATP (Jannasch, 1972), and then
correcting for the protozoan mass. {Of course, il is also possible Lo use the
observations of P + B directly by defining in an appropriate way the output trans-
formation matrix, see Sec. 1-2. The same applies to the corrections discussed
below.) In measurements of the organic pollutants it is, in practice, impossible to
" differentiate between easily and slowly degradable pollutants. The total organic
pollution, however, can be easily measured. One way is to measure the BOD of the
water samples and to correct for the BOD of the living matter, so that measure-
ments of w, + w, would be available for the parameter estimation. Another way
is 1o measure the total COD and then correct for both living and undegradable
matter {see Sec. 3-5). Quite often the major components of the undegradable
organic pollution can be measured separately, e.g., chlorinated carbohydrates.
The rest {or even all undegradable organic matter, see Sec. 5-3) may be considered
as part of w,. To summarize, observations of (w, + w;), B, P, and ¢ can be made
available at reasonable expense for parameter {and state) estimation of model
{4-4-1). Whether this is sufficient or not for the determination of the parameters
will be discussed in Sec. 5-3.

Far less can be proved analytically for model (4-4-1) than for the Streeter-
Phelps model. But what can be proved is in accordance with what may be
expected for an ecological river quality model. Thus, it can easily be shown
that the values of w,, wi, B, and P can never become negative if the initial
values are non-negative. The oxygen concentration may drop below zero (as
with the Streeter-Phelps model), but this unrealistic result occurs only in extreme
situations.

The equilibria of the model can also be easily calculated. In the case oi‘. no
input (L, = L, = 0) there exists an infinity of non-isolated equilibrium points
in the subspace given by B =0, P = 0, ¢ = ¢, These equilibria are stable, but not
asymptotically, in the sense that after a small perturbation of the state, the system
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returns once more 10 an equilibrium, not necessarily the same one, though
close to it. In other words, B, P, and (¢, - ¢} tend to zero as t goes to infinity,
while certain amounts of w; and w, may be left over, depending on the initial
values (and on the parameter values, of course). For conslant, but non-zero input
and realistic parameter values there are two isolated equilibrium points, one with
all variables preater than 2ero, and one in the subspace given by P = 0. The
assumption of realistic parameter values means, for example, that the maximum
protozoan growth rate k,, is greater than the protozoan endogenous respiration
rate k.3, which is certainly reasonable. The dependence of the equilibrium state
upon the parameters can easily be determined, but it is not worth giving the
formulae here, since they are rather lengthy. The procedure involves putting all
derivalives equal to zere in Eq. (4-4-1) and then solving Eqs, (4-4-1d), (4-4-1a),
{4-4-1b), (4-4-1c), and (4-4-l¢) successively. For this the assumption P #0
has to be made, so that the first one of the two isolated equilibrium points
results. The other one may be calculated equally simply. It becomes clear during
this procedure what the above mentioned realistic assumptions about the para-
meter values have to be, in order to obtain positive equilibrium values. The
equilibrium point with P # 0 is an asymptotically stable one, as can be seen by
inspection of the matrix of the system derived from Eq. (4-4-1) by lincarization
around the equilibrium. The eigenvalues of the matrix have strictly negative real
parts (see Sec. 1-2). The imaginary parts are, in general, different from zero, so
that the motions in the vicinity of the equilibrium are damped oscillations, as is
typical for prey-predator relationships. Although it has not been proved, it is
conjectured that all motions starting with wy, wa, B, and P greater than zero
tend towards this equilibrium point. Figure 4-4-2 shows how the equilibrium
point is approached from arbitrarily chosen initial conditions using reatistic
parameter values. Il L, and L, are extremely high only B, P, and c reach stationary
values, while w, and w; increase tinearly for high t values.

The sensitivity of system {4-4-1) to changes of initial and parameter values
has been investigated extensively through numerical experimentation (see Sec. 4-1),
but only a few general results have emerged from this study. No dramatically
high sensitivities have been observed. Sensitivities show, in general, oscillations,
as do the motions toward the equilibrium (see Fig. 4-4-2). 1t is surprising how far
downstream disturbances of the initial values of w, and w, can be felt (for L,
and L, different from zero the motions are asympiotically stable, which means
that the difference between the perturbed and the unperturbed motion goes 10
zero as we go downstream). Probably the most interesting result is the sensitivity
with respect to temperature: il the maximum specific growth rates and endo-
genous respiration rates are all changed simultaneously in correspondence with a
certain temperature variation (sce Sec. 3-5) changes of the state variables are
remarkably smaller than in the case when only one of these parameters has been
changed. Numerical examples of how the model solution for non-constant input
varies il low rate and temperature are changed will be given in Sec. 5-3, where
model (4-4-1) is applied to a real case.
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4-5 OTHER ECOLOGICAL MODELS

As a representation of reality the ecological model described in the previous
section must be considered to be very crude, and of restricted applicability. Many
other ecological models can be found in the literature, most of which are much
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more complicated than the one described in Sec. 4-4. A few of them will be
discussed in this section. A complete survey of all ecological river quality models
would be beyond the scope of this book, because the material which would have
to be presented would be too voluminous. (Since there is no clear distinction
between river impoundments and lakes, the very broad field ol eutrophication
modeling would also have to be discussed.) None of the numerous medels which
contain ecological quantities, like algal or fish density, but not as dynamical
state variables (see Sec. 1-2) are mentioned. In those models the ecological
quantities usually do not depend on the pollutant input into the river, but appear
as externally given functions in the oxygen balance equation (see, for example,
O'Connor, 1967; Wolf, [971; Willis et al., 1975). In effect, some of the modified
Strecter-Phelps models presented in Sec. 4-2 are of this type (see, for instance,
Eq. (4-2-2)).

An ecological model, which is even simpler than the one described in the
preceding section, is the one by Gales et al, (1969), whose work was already
mentioned in Sec. 3-5. Iis state variables are the concentrations of organic
pollutants, bacterial mass, and oxygen. The mode! can be derived lrom model
{4-4-1) by removing all expressions related to slowly degradable poliutants,
endogenous respiration, and protozoa. Because of its simplicity a formal (graphical)
technique for estimating the parameters from measurements could be applied,
but the uncertainty of the parameters seems to be high, due to the lack ol measure-
ments of the bacterial mass (see Stehlest, 1973, and Chapter 5). The model was
used to describe both laboratory and field experiments with glucose as polintant,
This type of model has also been used to describe the nitrification process
(Stratton and McCarty, 1967; O'Conner et al., 1976). Since nitrification is a
two-stage process {see Sec. 2-3), in which the ammonium substrate is used in
sequence by two different types ol bacteria, it is necessary to couple two of these
models appropriately.

An ecological model considerably more complex than the one in Sec. 4-4
was developed for the Delaware Estuary {(USA) by Kelley (1975, 1976). The
ecological relationships encompassed by this model are shown in Fig. 4-5-1, in
analogy to Fig. 4-4-1 (cl. also Fig. 2-3-9). The mathematical description of the
relationships is not worth giving here, especially since the single expressions used
have essentially been discussed in Sec. 3-5 already. As one can see from Fig. 4-5-1,
eutrophication is a major problem in the Delaware Estuary, while nitrification
is considered to be less important. Another remarkable feature of the model is the
intention to relate fish abundance to pollutants input. Since fish abundance is an
important quality indicator, which also characterizes the recreational benefit of
the river, it is very valuable to have it as a state variable of a river quality model.
Another interesting aspect is the modeling of the mass transport phenomena in
the estuary, which has to cope with tidal movements. Two versions of the model
have been investigated: in the first, the river was viewed as a sequence of com-
pletely mixed tanks, similar to the CSTR model mentioned in Sec. 4-3. The river
flow from reach to reach was averaged over 1he tidal cycles. As shown in Sec. 4-3,
this model reproduces 1o a certain extent the dispersion phenomena. In the second
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Figure 4-5-1 Structure of the Delaware estuary model.

version, diffusive exchange between the reaches was introduced additionally,
mainly 10 account for tidal mixing. The second version proved to fit measured
data better than the first one, but the differences are not dramatic. The model
conlains a huge number ol paramelers, so that in view of the scarce measure-
ments for the dependent variables, application of a forinal estimation technique
would have been hopeless (see Sec. 5-1). Rather, the estimation has been done by
playing around with the parameter values within reasonable limits until the model
output fitted the measured values. In this way, satisfactory agreement with
measurements of oxygen, BOD, phosphate, and nitrogen from one month could
be obtained. No measurements were available for the other variables. The applica-
tion of the model specified in this way to another month, where flow rate and
temperature were considerably different from the month used for the parameter
estimation, gave very poor agreement with the observations.

Another ecological model, which is of comparable complexity to the model
just described, has been reported by Boes (1975). The parameters have been
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estimated in a similar manner, too. The model was used to predict BOD and
oxygen concentrations in the Neckar river in West Germany, while dynamics of
the other model variables were not discussed. The BOD and DO predictions
have been compared with the corresponding predictions of two other, simpler
models (Woll, 1971; Abendt, 1975) and the differences have turned out to be
fairly large.
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CHAPTER

FIVE _
STATE AND PARAMETER ESTIMATION

51 GENERAL REMARKS
Problem Definition

The various models discussed previously are characterized by numerous para-
meters which cannot usually be determined theoreticaily or measured directly.
Rather, they have to be determined on the basis of observations of the system
output. .

Confining ourselves, for the sake of simplicity, 1o the discrete time case, this
means (see Eq. (1-2-20)) that the parameter vector 8 = [#, 8;---0,]7 in

x{t + 1) = £(x(1), u(z),8,1) (5-1-1a)
y(0) = n(x(1), 8,1} (5-1-1b)

has to be determined on the basis of observations of the vector y. This problem
is called parameter estimation. Its solution obviously requires the knowledge of the
system state x (or something equivalent). Therefore, if the state is neither measur-
able directly nor known for other reasons, the problem of stare estimation, which
is an important problem not only in the context of parameter estimation but
also in its own right (see, for example, Sec. 5-4), has to be considered.

As already mentioned in Sec. 1-3, there exists a close relationship between
state and parameter estimation. Parameters 8; (i = 1....,q) can always be con-
sidered as additional state variables for which equations of the type

Ot + 1y =0,(1)
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hold. Hence, the problem of state and parameter estimation for a system (5-1-1) is
equivalent to estimating the state of the system

2(t + 1) = F(z(1). u(2), 1) (5-1-2a)
¥ =n'(z(n.1) (5-1-2b)

z= [;] Fzun= [r(x,;;a, ')]

'z 1) =n(x,0,1)

In general, the new model is nonlinear, even if the original one was linear,

Il the parameters are 1o be estimated alone, an input-cutput description
of the system (see Sec. 1-1) can be used in erder to eliminate the state equations.
Then the parameters have to be estimated from

with

8t + 1) = 8{t) (5-1-3a)
¥l = ¥, (gl ). 80, 1)

where ¥, ., is an input-output relationship. This formulation is again of the
form (5-1-2). More generally, it can always be assumed in the [ollowing that a
representation of type {5-1-2) in which the state z comprises exactly the quantities
to be estimated has been found.

Unfortunately, estimation problems are, in practice, complicated by the fact
that the system is randomly disturbed. The usual way ol representing these
disturbances is to add suitable noise terms to the model equations, Thus, for
example, Eq. (5-1-2) is modified to give

z(t + 1) = F{z(0),u(, 1) + v(n) (5-1-4a)
¥(0) = n'(2(0), 1) + w() (5-1-4b)

where v and w are called process and measurement noise, respectively. Equations
(5-1-1) and (5-1-3) may be modified in a similar way. Of course, the addition of
vand wisnot the most general way ol taking into account the random disturbances;
but usually one does not know exactly the characteristics of the noise and so
the most simple representation is chosen. If the noise terms are added in Egs.
(5-1-1)-(5-1-3), these equations are, in general, no longer equivalent, as they are
in the deterministic case. However, since the usual way of taking noise into account
in water pollution modeling is in one equation as arbitrary as in the other, the
estimation probiem is always assumed to be of type (5-1-4). The stale estimation
problem can be formulated precisely in the following way: given two sets U, and
Y. of inpul and output cbservations of a system over the time interval [0, r], and
given a state model of the system, find a “suitable™ estimate for the actual value
of the state z at the prescribed time ¢t,. (For time-varying systems the observation
interval ought to be defined more generally, but this minor loss of generality is
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not essential for what follows.) The argument ¢, will be left out in the following
if there is no danger of confusion. The “suitable” estimate of z is denoted by Z, the
set of all possible z is denoted by Z, and the rule for calculating % ie,

t=12(U.Y) (5-1-5)

will be called the estimuator. The notion “svitable™ in the problem statement will
be specified through the selection of the function 2(*,*) appearing in Eq. (5-1-5).

The literature on the problem formulated just now is fairly well developed.
More or less broad overviews of the area can be found in Astrém and Eykhoff
(1971), Eykhoff {1974), Isermann (1974), Unbehauen et al., (1974), and Strobel
(1975). Many articles on particular 1opics are given in the proceedings of the
IFAC Symposia on Identification and System Parameter Estimation.

The estimate Z is a random variable because of the random disturbances. Its
statistical properties (which are determined by the characteristics of v and w) ase
very important for selecting a suitable estimator. The most desirable ones are

Unbiasedness: E[1] = z, where E[ -] denotes expectation.
Consistency : lim p(]|Z — z|] > €) = 0 ¥ &> 0, where || - || denotes norm.
t=eoD

Efficiency : cov[] = E[(2 — 2)(z — )"} < cov{{] for all unbiased estimators 4
where cov [ - ] denotes covariance. (The statement A < B, where A and B are
matrices, means that x"Ax < x"Bx for all vectors x.)

Selection of Estimators

The essential assumption for ajl statistical estimation techniques is that the
probability density function (pdl} of the observations is known, apart from the
unknown value z. This means, the function

p(Y:|2)

is known, where the bar denotes conditional upon. (For the sake of notational
simplicity the same symbol z is used for both the random variable and its actual
value, and the input observations are omitted. In the applications shown in the
following sections u(f) is assumed to be known exactly, anyway.) For estimation
the a posteriori probability

plz| Yo)

is of interest, i.e., the probability for the different z-values given certain observa-
tions Y,. The relationship between a priori and a posteriori probabilities is given
by Bayes' rule (see, for instance, Raiffa, 1968):

plY. |2)p(2)
p(Y:|2)p(z) dz

plz| Y.) = (5-1-6)
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The a priori probability p(z) for z might reflect very vague, subjective knowledge.
Since the integration in the denominator of Eq. (5-1-6) extends over all z, the
denominator equals p{Y,}. A natural choice for an estimator z would be the solution
of the maximization problem

max [p(z| Y.)] {5-1-7

i.e., Z is defined as that value of z which maximizes the a posteriori probability
given by Eq. (5-1-6). This kind of estimator is called Bayes’ estimator, because
of the use of Bayes' formula. It can still be refined, if one knows the costs
associated with a deviation of the estimate [rom the true value of z If €(z,2)
indicates the costs to be incurred if z' is wsed instead of the true value z, it is
reasonable to use as an estimate that value of z” which minimizes the expected
costs, i.e., 10 use the solution of the minimization problem

m:jn J“f (z,2)p(z] Y.) dz {5-1-8)

In general, (z, z) is known only after the model has been applied to the
problem causing the modeling effort {see Sec. 1-3 and 10-1). Hence, if the estimator
is given by expression (5-1-8) no use is made of the separation hypothesis mentioned
in Sec. 1-3.

In most cases, however, even less a priori knowledge than required by
Eq. (5-1-6) is available. If nothing is known about p(z), the assumption usually
made is

plz) = const.
for all z€ Z. Then Eq. {(5-1-7) yields the same  as

max [p(V. |2) (5-1-9)

The lunction p(Y.|-) {which is not a pdll!) is the so-called likelihood function;
corresponding to this, the estimate from Eq. (5-1-9} is called maximum likelihood
estimate. 1t gives the value of z for which the observed values Y, have maximum
probability.

The statistical properties of the maximum likelihood estimator have been
extensively studied. 1f there is no process noise and certain other general assump-
tions are fulfilled the maximum likelihood estimator can be shown to be (Eykhoff,
1974} asymplotically unbiased (ie. E[Z] -z as t— o), consistent, and
asymptotically efficient. Moreover, it is asymptotically normally distributed and
the covariance matrix is given by

-1
]] (5-1-10)
=i

. 9*In p(Y,|2)
cov [1] = — [E[—W
The matrix within the brackets on the righthand side ol Eq. (5-1-10) is called
fnformation matrix (see Sec. 5-3).
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If also the conditional probability density p(Y, |2) is unknown it is usually
assumed that it can be characterized completely by its expectation and covariance
and that only the expectation depends on zit,). In ather words, a (1 -+ L)p-variate
Gaussian {normal) distribution is assumed for p(Y, |z):

p(Y.|2) = Crexp(—HY, - E[Y. ]V (cov[Y. ]~ '(Y. — E[Y.]) (5-1-11)
where C is a normalizing constant and Y, has to be interpreted as the vector

Yo = [yO y(O7... 50}

If the system {5-1-4) is linear and both v(t) and wir) are wncorrelated (“white™)
Gaussian disturbances, the observations Y, are exactly a sample from such a
distribution (see Sec. 5-4). Since the logarithm is a monotonic function, maximiz-
ation of p(Y. |2) from Eq. (5-1-11) with respect to z yields the same estimate z as

min (Y, — E[Y)T (cov [Y.]D~" (Y. — E[Y.]} (5-1-12)

The rule (5-1-12) lor calculating the estimate Z is called Markov estimator. For
reasons which will become obvious in the following, it is occasionally also called
generalized least-squares estimator.

Often even the knowledge about cov [Y,] is defective. Then one may assume
that the covariance matrix is diagonal and that the diagonal elements (variances}
for each component of y are the same for all +. This particular covariance
matrix is obtained if there is no process noise in system (5-1-4) and w{1) is a
white Gaussian noise with covariance matrix

ot 0 ... 0
i1 (OGN (5-1-13)
0o 0 .. o
Under this simplifying assumption maximization of (Y, | z) becomes equivalent to
[ r
min 3 lz Y, 0u0) — E[yd))? (5-1-14)
r =1 Oi /=9

i.e. equivalent to minimizing the sum of the squared deviations of y,(t} from the
undisturbed output, where the squares are weighted by 1/ot. If nothing is known
about the o? the most natural choice is to assume that they are all equal. An
estimator which minimizes the sum of squared deviations between actual measure-
ments and the output of 2 model is called least-squares estimator. It is the most
widely used type of estimator.

Maximum likelihood, Markov, and least-squares estimator all have been
derived as simpler and simpler special cases of the Bayes’ estimator. As alread_y
indicated they are usually applied not because the assumptions made for their
derivation are fulfilled, but because the knowledge about the noise characteristics
is not sufficient, or a more sophisticated estimate is too complicated to be deter-
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mined. In these cases the estimator has, in general, poorer statistical properties
than a more sophisticated one. However, quite often it is possible to transform
the output y(¢) through a filter into a signal which has exactly the characteristics
required for the derivation of a simpler estimator (Astrdm and Eykhoff, 1971).

Numerical Techniques

Once an expression either for p(z| Y,) or p(Y, | z) has been derived the problem of
determining the maximum over z remains, In general, this is a difficult task for
which iterative numerical techniques have usually to be used (see e.g.. Eykhofi,
1974). If, however, the function to be maximized is quadratic in the components
of z, and z is unconstrained the maximization can easily be done by putting
all derivatives of the function with respect to z; equal to zero, which yiclds a
system of linear algebraic equations. This way of solving the maximization
problem is feasible with the least-squares estimator, if E[y(t)] in Eq. (5-1-14)
is a linear function of z(t,).

In any case, there are iwo strategies for numerically calculating the estimate.
They might be called accummlative and recursive estimation. Accumulative pro-
cedures are designed for calculating the estimate from a fixed set of observations,
while recursive schemes are suited for estimates which are to be updated as new
observations become available. Hence, accumulative procedures are appropriate
for off-line use and in particular for estimation of parameters which are supposed
not to vary in time. Recursive methods are used for on-line estimation, where
usvally ¢, increases at each recursion in accordance with the sampling interval.
Each recursion may be interpreted as an application of Bayes' rule (5-1-6) for
combining the information on z{t,) which has been extracted from the previous
measuremnents {a priori probability) with the information on z{t,) obtained by
the new measurement. To starl a recursive estimation scheme one can either
use an estimation result from an accemulative scheme or a subjective guess with
an appropriately large variance. Recursive schemes are used, for example,
for real-time stale estimation in feedback control problems (see Sec. 9-1) or for
estimation of parameters which can be expected to drift. They may also be used
as a tool for determining the structure of a model: observation ol how a parameter
eslimate changes under repealed updating may yield hints for improving the
mode! structure, or confirm the structure proposed (see Sec. 5-5).

A critical problem (or all estimation technigues is the problem of “identi-
fiability.” 1t is not at all obvious a priori whether the value of (t,) can be determined
uniquely from the available observations, If we try, for instance, to estimate too
many parameters, which means that the dimension of z is high, there will be
many completely different combinations of parameter values with about the same
a posteriori probability, or in other words, [cov [£]]~! becomes singular {se¢ also
Eq. (5-1-10)}. This means, only certain combinations of the originally proposed
parameters can be estimated vniquely. The result may be physically meaningless
parameter values or difficulties in the numerical calculations. Similar things may
happen with too short observation sequences or too large noise variances. Very
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little can be said on a theoretical basis, and even the definition of “identifiubility”
(in probabilistic terms) is problematic. Therefere, numerical experimentation is
often the only way to solve the problem of identifiability (see, for example,
Mehra and Tyler, 1973, and Sec. 5-3). In the case of linear systems without
noise, conditions under which z(r,) can be determined uniquely (conditions for
“observability”) can be specified theoretically; they are discussed in Sec. 5-4.

Classification of the Applications

In the following sections four examples of estimation techniques, which have been
applied to river quality models, are given in detail ; two are of the accumulative
and two of the recursive type. Both accumulative lechniques use the least-squares
criterion. In Sec. 5-2 the parameters of a modified Streeter-Phelps model are
estimated by a direct search in the parameler space, In Sec. 5-3 state and
parameters are estimated simultaneously for the ecological model described in
Sec. 4-4 by solving the estimation problem lor a sequence of linear approxima-
tions to the original model.

The recursive technique described in Sec. 5-4 calculates a Markov estimate
for the state of a linear system at time r, = 1. The algorithm, which is known as
Kalman filter, is also obtained if the estimation result for z(z — 1) and the new
observation y(r} are to be combined in such a way that

E[(z(x) - ()" (2(0) ~ 20))]
is minimal.
The Kalman filter is also used in Sec. 54 for estimating solely the parameters
of a linear system. As already mentioned, system (5-1-4) need not be linear cven
if the parameters appeared linearly in the original model. A linear system may be

obtained, however, by applying the following trick. The single input-single output
linear state model is transformed into a model of iype (1-2-17) (in discrele time)

WO + axlt = 1)+ - + a,pit — n) = byt — 1) + bault — 2) + -+ + bt — )
(5-1-15)
following the procedure indicated in Sec. [-2. {In general, however, the parameters
a; and b; are not identical with the original parameters but with certain combina-
tions of them.) IT the state vector z is now defined as

z=[a;--a, by by)"
and the output matrix
’ W) =[—ylt = 1) = ft —n} wlt—1)---ult — n)]
Eq. (5-1-15) can be put inta the form
2t + 1) = z(1) (5-1-16a)
#t) = bT{nar) (5-1-16b)
System (5-1-16) is a time-varying linear system and if the random disturbances,

3-2 NONLINEAR PARAMETER ESTIMATION OF STREETER-PHELPS MODELS 147

which are not included in Eq. (5-1-16), have the appropriate characteristics,
the Kalman filter may be applied (Astrém and Eykhofi, 1971). This technique
could not have been applied in a straightforward manner to the problem treated
in Sec. 5-2, since the observations were not regularly spaced. A discrete time
model like (5-1-15) would be time-varying in this case and therefore Eq. (5-1-16a)
could not be used.

In Sec. 5-5 a recursive technique for state estimation in nonlinear models
is described and applied to combined state and parameter estimation. It is an
extension of the Kalman filtering technique described in Sec. 54. Finally, in
Sec. 5-6 a few other applications of estimation techniques to water quality models
are reviewed.

5-2 NONLINEAR PARAMETER ESTIMATION OF
STREETER-PHELPS MODELS

The aim of this section is to describe a very simple least-squares estimator for
the parameters of linear models such as those described in Secs. 4-1 and 4-2 (see
Rinaldi et al., 1976). The estimation scheme is nonlinear and accumulative and
requires that steady state BOD and/or DO values have been sampled in a certain
number of points along the river. For the sake of clarity, reference 1o the particular
case of the Bormida river (Italy), to which the estimation scheme has been applied,
will be made.

The stretch of the river which has been considered is 68 km long and shown
in Fig. 5-2-1; the numbers (0, 1,..., 6) indicate the points in which measurements
of temperature, BOD, and DO were taken. Because of the very high BOD load
discharged by a lactory in point 0 the downstream dissolved oxygen concentration
was very low and some control action had to be taken in order to satisly some
required steady state stream standards. The installation of a wastewater treatment
plant and/or the use of the upstream reservoir (see Fig. 5-2-1) for low flow
augmentation were the two feasible alternatives open to the local authority. In
order to make the decision on a rational basis a mathematical model was needed
which could allow the computation of the sieady state dissolved OXxygen concentra.
tion at ally point of the stretch under different hydrological, thermal, and bio-
logieal eonditions. Since algae had been observed in the final part of the stretch
and sedimentation was supposed to take place in all the stretch (see Marchetti
and Provini, 1969) a modified Strecter-Phelps model of the Dobbins kind (see
Eq. (4-2-1)) was selected for further investigation. '

Moreover, dispersion was neglected together with some minor distributed
BOD load so that the model was given by

ab ab

7t g = - [a(M + (kstoi@y ai0)]e (5-2-1a)
d é ka(T,

3§+ ua—‘;-: —k|(ﬂb+—z(£(c.(7')—c)+%‘q)- (5-2-1b)

H{Q)
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Discharge

Flow mate gauging
siation

. . Figure 5-2-1 The reach of the Bormida river
‘ Reservoir investigated, and locations of point (0) and
measurement stations {1-6).

where, as vsual, T is the water temperature, A the cross-sectional area, v }he
average stream velocity (v = Q/A) and H(Q) is the mean river depth as a_fum:t:on
of flow rate Q. Notice that the parameters are defined differently than in mo_del
{4-2-1, 4-2-2) in order to make clear the dependence on T and Q..Thc selection
of a particular model among this class is, strictly speaking, a !‘unctlonal prob!em
since the functions ky(T), k2(T; @), ka(v), and ks {deoxygenation, rcqugenauon.
suspended BOD sedimentation, and photosynthetic oxygen production rate) are
unknhown. Moreover, the functions v(Q), A(Q), and H(Q) are also unknown in
the majority of the applications. o o

Thus, a more convenient set up must be obtained, and this is possible if
a particular isothermical regime, characterized by constant BOD. load and
constant fAow rate Q, is considered. Under these assumptions the daily average
BOD and DO concentrations satisfy the following differential equations
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db
de
d_l =—Kib+ Kisle,— ) + K, (5-2-2b)

where the lunctions K,, # = 1,...,4, depend upon the two independent variables
Qand T, ie,

K\(T. Q) = ki(TY(Q) + ka(v(Q))/Q (5-2-3a)
Ka(T.Q) = ki(T)/v(Q) (5-2-3b)
KT, Q) = ka(T, Q/H(Qw(D) (5-2-3c)

Ka(Q) = ki/Q (5-2-3d}

In order to further simplily the estimation problem the structure of these unknown
functions is specified in terms of a finite dimensional parameter vector 8 =
{01,...,8,) so that the functiona) estimation problem is reduced to a much more
simple finite dimensional parameter estimation problem (determination of the
optimal value of 8). Thus, from now on, the four functions K.(0,T,Q), h=
l,...,4 are assumed to be given.

The solution of Eq. (5-2-2) is well known and is given by (see Sec. 4-2)
b{l,K\, bo) = bpe % (5-2-4a)
c(bKy,....Kasbo, o) = ¢, + KofK3 — [, + (KafK3) = cp] €75
+ [Kabo/(K) = Ky)][e 5! —e %) (5-2-db)

where by and c, are the concentrations at the upstream end of the stretch (I = 0).
Consider n different steady state regimes characterized by n pairs (@', T'),
i=1,....n of low rate and water temperature and assume that the daily average
concentrations of BOD and DO have been measured for each one of the above
regimes at the initial point (!=0) and at r fixed points (stations) j=1,...,r
along the river. Thus, a set of initia) conditions
{bh, cb) i=1,...,n

and a set of measurements along the river
bhceh i=lL.an  j=1,..,r

are available together with the distance I, j= 1,...,r, of each station from the
origin of the stretch, The square of the deviations for each station and for each
regime can therefore be defined as

of = [bil), K\, bh) - bj]*
d‘ = [C(’jl Kh“ W Ka b::hd]) - ‘-‘,‘J]z
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so that the square error J' associated with the i-th regime is given by
=Y [f+(1-2d] 0sis] (5-2-5)
=

and the total square error of J is

Thus the least-squares estimation problem can be formulated as follows:

Problem A
Assume that the structure of the functions K, is known, ie, let Ky, =
K, 0. T.Q),h=1,... .4, where 8 is a g-dimensional vector of parameters. Then
determine the value of @ which minimizes the total error J.

This problem could be solved by applying a suitable searching algorithm in
the g-dimensional vector space of the parameters Unfortunately, reasonable values
for q are quite high (about 10-12) which is probably the reason why this problem
has never been dealt with in the literature.

A suboptimal solution of Problem A can be obtained by solving the following
two problems in series:

Problem B-1
Foreachregimei = 1,...,n, determine the four-dimensional parameter vector
K' = (Ki. K% K, KL) which minimizes the error J'.

Problem B-2
Determine the parameter vector 8 which solves the following regression
problem

min 3 )‘: (Ku0.T'. Q") — KL

9 I=1a=1

Problems B-1 and B-2 are, in general, simpler to solve than Problem A and the
dimensionality of Problem B-1 can be reduced by taking advantage of the
particular structure of the model. Moreover, if data and estimates of Problem B-1
are highly correlated for all regimes the solution of Problem B-2 may be
expected to be similar to that of Problem A. In the following, these correlations
are computed for the Bormida river. They turn out to be very high, from which
the conclusion may be drawn that Problem B is, in general, a meaningful problem.
This result also justifies the fact that Problem B-1 is the only one which has
been dealt with until now in the literature.
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Solution of Problem B-1

Problem B-1 is a four-dimensional problem since four parameters must be deter-
mined. Nevertheless, the dimensionality of the problem can be reduced to two,
In fact, from Eqgs. (5-2-4) and (5-2-5) it follows that J! is quadratic in K, and
K4, so that the stationarity conditions

ar o

=% w0 29
are linear in the same parameters. It is therefore possible to obtain two lunctions
from Eq. (5-2-6)

K; = K3(K,, K3), Ka= Ki(Ky, Ky)

which can be substituted into the expression for J'. Thus J' becomes a function
only of the two parameters K,, K, and a searching method in the parameter
space (K, K3) must therefore be used to solve Problem B-!. Since nonlinear
searching algorithms are described in some detail in Sec, 6-2 the reader is referred
1o that section for this point.

The two limit cases A= 1 and A =0, which correspond to weighting only
BOD or DO errors in the performance, are of particular interest. The first case
(4= 1) impties that the estimation of the parameters can in fact be performed
in two separate and very simple steps, while the second case (4 = 0) requires only
DO data to be collected, which is a definite advantage considering the effort
needed for measuring BOD.

Two-step estimation (1 = 1) For 1 =1 Eq. (5-2-5) gives

r

Ji= Y e = Y [bil, K, bh) — BiJ? (5-2-7)
= =
from which the estimate K| can be obtained by applying a one-dimensional

search algorithm (see Sec. 6-2). The three remaining parameters can be obtained
by minimizing the DO error

,i: o= ,i. [el; K, Kb, K5, Kb, b, cb) — &2

where K{| is the value determined in the first step of the procedure (minimization
of (5-2-7)). As mentioned above, the two parameters K. and K can be eliminated,
thus reducing the problem to a simple one-dimensional search with respect to
Kj. In conclusion, the four parameters (K!, K4, K4, K!) can be estimated by
means of two successive one-dimensional search procedures. Because of its
simplicity this is the estimation scheme which has been used for the Bormida
river case.
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Estimation from DO measurements (1 = 0) For 1 =0 the objective lunction
{5-2-5) becomes

Ji= 3 [ell, Kb Kb K5, K, b, ch) = )2
Jj=1
from which it is still possible to derive estimates of the four parameters by means
of a two-dimensional search.

It must be noticed that one BOD measurement is used in the estimation
procedure. If this measurement is not available only three parameters can be
identified. In fact, il only DO data are available the analysis must be based on
the second order differential equation derived from Eq. (5-2-2) (see Eq. (1-2-17))

d? d
d—‘f = — (K, + Ky) d—j + K, Ky(c, — ) + K, Ka (5-2-8)

in which the parameter K, does not appear. From this equation, the solution
cj can be obtained in each point I, j=2,...,r, as a function of the two measure-
ments ch and ¢}, ie,

E} = E"j! Kl. K]. K‘. C{h C'l)

This expression can be used to define the objective [unction

r

Je= 3 [ -]
j=2
which must be minimized in order to obtain the three best estimates (K, K%, K¥)
of the parameters appearing in Eq. {5-2-8). Again this minimization can be
performed in a two-dimensional vector space since E} is linear in K,.

The conclusion is that the deoxygenation rate K cannot be identified [rom
DO measuremenis: at least one BOD measurement (e.g., bh) is necessary to
estimate this parameter. The only trivial exception is when sedimentation effects
are a priori known to be negligible since in this case K, = K,.

Estimation Results

Returning to the problem of the Bormida river, the BOD, DO, and water tem-
perature were measured in six stations and at the wastewater outlet at monthly
intervals for four years, while the flow rate Q was continuously recorded at an
upstream station. Thus, 48 sets of data were available from which fifteen regimes
corresponding to roughly stationary hydrological and thermal conditions were
selected in order to apply the algorithms described above (see Table 5-2-1).

The flow rate Q' was taken as the average value of the flow rate during the
three days immediately preceding the moment in which the data of the i-th regime
were collected. The temperature T* was chosen as the average of the measurements
obtained in the six stations at the same time as BOD and DO were sampled.
Since these measurements were not taken at the same time of the day this average
value T' is not very significant. Finally, since continuous records of BOD and DO

5-2 NONLINEAR PARAMETER ESTIMATION OF STREETER-PHELPS MODELS 153

Table 5-2-1 The data of the 13 regimes used for parameter estimation and of the
two regimnes used for the model validation (the first row of each regime refers to
BOD (mg/1), the second one to DO (mg/1)).

Water

. Temperature {°C)
Station number 0 | 2 L) 4 5 6 Flow rate
Distance (km) 000 175 420 1400 2500 4000 6800 (10’ m’/day) Avernge Range
Regime
1 1960 1800 2000 11RO &40 330 100 55 17.5 42
15 30 00 45 55 65 90
2 1490 1180 1200 920 720 3580 240 60 9.0 31
40 4.5 30 55 90 95 95
3 2220 2200 1620 1260 1100 &0 400 125 0.5 50
50 00 10 10 50 65 105
4 160 1050 1050 840 00 440 IRO 100 19.0 30
30 35 20 50 55 60 75
5 1550 1600 1250 780 450 180 140 75 18.0 32
15 00 1.5 3s 45 55 70
[] 1290 1500 1250 B6O 00 460 200 -1} 170 13
k)] 3.5 20 50 60 60 [ 3
7 80 700 680 3560 500 M0 240 228 50 25
10 0.0 0 60 0 95 120
8 1110 1600 1450 720 630 300 160 100 5.0 A?
15 [ 1] 00 1.2 22 3% 58
9 2050 2000 2000 (1040 930 600 5SRO 55 100 89
0 00 00 40 60 60 10
10 1010 1000 900 700 430 3580 220 200 13 15
10 50 40 40 B0 90 90
1] 840 800 BOO 600 500 MO 240 250 15 24
BOD 10 60 BO 100 105 110
12 1630 1500 1350 1000 850 620 500 128 ta 24
45 00 05 40 50 60 B8O
13 740 800 0 60 440 460 220 200 160 23
55 55 30 60 70 15 BO
14 1060 900 3850 7T00 550 400 200 200 s 3.5 o
75 o 10 5.0 0 90 95
15 900 750 80D 400 MDD N0 120 150 160 60

690 35 25 50 10 B..S 9.0

were not available, the samples were assumed to be equal to the average daily
values,

Using these very rough assumptions concerning the data, Problem B-1 has
been solved for different values of A for the first thirteen regimes of Table 5-2-1,
the main result being that sedimentation and photosynthesis could reasonably
be neglected, ie., K, = K, and K, =0,

Then, the estimation of the two parameters (K, K,) of the Streeter-Phelps
model was cartied out again for the same thirteen regimes by means of the
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Figure 5-2-2 Estimales of parameters K, and K, for the 13 considered regimes and curve (5-2-10).

two-step procedure outlined above. The estimates of the paramelers are shown
in Fig. 5-2-2 where each number refers to the corresponding regime of Table
5-2-1. The correlation coefficient beiween estimated and measured BOD turned
out o be greater than 0.95 for all regimes (average value 0.98), while for the
DO concentrations the minimum correlation coefficient was (.75 (average v:-llue
0.90). These high correlation coefficients justify the interest in Problem B-1, since
the solution of Problem B-2 can now be expected to be similar to that of
Problem A. Unfortunately, as could be predicted from the uncertainties of T,
the regression problem B-2 did not give satisfactory results as far as the depepdcncc
of the parameters (K, K}) upon T is concerned. Nevertheless, disregarding the
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dependence upon T and letting
Ki=0,0% K,=0,0"
the solution of problem B-2 gives
K, =0207%4 K,—164Q°°* (5-2-9)

with correlation coefficients r = 0.68 and r = 0.89 respectively. Then, by eliminat-
ing Q in the two preceding expressions the following relationship is obtained

Ky =327.5K) 8¢ {5-2-10)
which is represented in Fig. 5-2-2, while the ratio K 3/K, is given by
Ky/K, = 820Q79-27 (5-2-11)

This relationship can be proved to be approximately satisfied even if the tempera-
ture is taken into account. In fact, consider Eq. (5-2-3) with k3 =k, =0 and,
disregarding the dependence of k; upon turbulence (see, for example, Metcalf and
Eddy, 1972), let {see Eq. (3-5-9})

k|(‘r) o c[IT-.'MD'I kz(T. Q} o ﬂcr-zo'n

where « and f are suitable parameters and o« denotes proportionality.
Then, from Eg. (5-2-3)

KofKy o (/)72 H(Q) (5-2-12)

Since (a/fi) is approximately unity (see, for instance, Metcalf and Eddy, 1972)
the ratio K,/K, should only depend upon Q, as it does in fact in Eq. (5-2-11).
Moreover, from Egs. (5-2-11) and (5-2-12) one can derive

Q o H!.TB

which is convex, as a stage-discharge relationship must be {see Sec. 3-3).

The result of the parameter estimation phase is that the Bormida river is
described by a Streeter-Phelps model with the parameters K, and K 3 dependent
on the flow rate Q as indicated by Eq. (5-2-9). These equations have been used
to validate the model by means of the last two regimes of Table 5-2-1. The
results of the validation turned out to be satisfactory and are shown in Fig. 5-2-3.

The problem of the sensitivity of the estimates with respect to the data of the
first measurement point and with respect to the BOD data is now briefly discussed.

As is well known, BOD and DO data collected in the vicinity of a discharge
point are often not very useful, since the waste and the river are not yet com-
pletely mixed al that point {with the measurement of the Bormida river this was
not the case). Therefore, it is of interest to know if the parameters (K, K,) can
still be estimated without using the data of the first measurement point. The
results obtained from the Bormida using only the data of stations 1,...,6 are
highly consistent with the preceding ones (see Fig. 5-2-4}. Therefore, it is possible
to state that in doubtful cases it would be better to omit unreliable initial data,
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even if this entails the new initial point being approximately on the minimum
of the DO sag curve (as it is in many of our regimes).

Finally, the parameters (K,, K;) have also been estimated by means of
DO measurements only, as indicated on page 152. The estimates which have
been obtained are relatively consistent for the decay rate K, as shown in Fig. 5-2-5,
while the estimates of Ky were found to be, in general, very inconsistent with
the preceding ones. This fact can easily be explained, since it follows from
Eq. {5-2-8) with K, « K, (as it is in the case under discussion) that the final part
of the DO sag can be approximated by

e =c,—{e;—co)e™ ™!

which depends orly upon the deoxygenation rate K,. Thus, if station 2 is not
located around the minimum of the DO curve a good estimate for K ., and a
poor estimate for K, may be expected, and this is indeed what happened for
the majority of the thirteen regimes. On the other hand, for the two regimes
in which station 2 was around the point of the minimum DO (see regimes 10
and 13) highly consistent estimates for K, (see Fig. 5-2-5) and quite satisfactory
estimates for K3 were obtained. In conclusion, if only DO measurements are
available the two parameters of the Streeter-Phelps model can still be estimated
provided that at least three data points are in the critical part of the DO curve.

f | 1 1

I
0 001 002 003 004 005
R, tkm™)

Figure 5-2-5 Estimates of decay rale Ky with BOD and DO measuremenis (K,) and with DO
measuremenis only (K} ).
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5-3 QUASILINEARIZATION TECHNIQUE WITH APPLICATION
TO THE RHINE RIVER

Another application of an accumulative estimation technique to a real case is the
identification of two water quality models for a major part of the Rhine river
in Germany (Stehfest, 1973). The Rhine river, which is depicted in Fig. 5-3-1, is
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Figure 5-3-t The Rhine river basin.
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one of the most heavily polluted, large rivers in the world. At the same time, its
water is extepsively used for drinking water production, and also for other
purposes such as navigation, recreation, etc. In view of this situation, the need
for a river quality model is obvious. In order to be able to estimate the level
of model complexity necessary to obtain a realistic river management tool, two
models were used: the ecological model described in Sec. 4-4 and a Streeter-
Phelps model. The part of the river modeled extends from the cities of Mannheim
and Ludwigshafen to the Dutch-German border. Upstream from Mannheim/
Ludwigshalen the river pollution is considerably less severe, and downstream
from the Dutch-German border 1he estuary part, which has to be modeled in a
different way, begins.

Quasilinearization Technique

The technique used for the estimation part of the system identification (see
Sec. 1-3) is the quasilinearization technique for solving nonlinear multi-point
boundary value problems, described in detail by Bellman and Kalaba (1965) and
Lee (1968) (see also Eykhoff, 1974). Looking at the estimation problem as a
boundary value problem means that the parameters are treated as additional
state variables, as described in Sec. 5-1. Then the initial values of the augmented
state are determined such that the sum of the squared differences between the
measurements and the output of the model is minimal. Confining ourselves to
time-invariant systems and linear observation equations, the problem can be
formulated as lollows (see Eq. (5-1-14))

K
min J(x(0)) = min [‘}; 507 3, ba = hrxu,.))*] (5-3-1a)
subject to
% = f(x) {5-3-1b}
y=Hx+w (5-3-1¢)
where

o} = variance of w,
tu = time at which the k-th measurement of y; was taken
Yua = measurement of y; at time
h = i-th row of the output transformation matrix H
w = measurement noise

The input u has been omitted from Eq. (5-3-1b) for notational simplicity. As
explained in Sec. 5-1, the least-square criterion used here is optimal in the
maximum likelihood sense only if there is no process noise. But it is a reasonable
substitute for the maximum likelthood criterion if the knowledge on the noise
characteristics is not sufficient.

The method of quasilinearization for solving problem (5-3-1} consists of



160 STATE AND PARAMETER ESTIMATION

calculating better and better approximations x/(0) to x{0) by solving iteratively
a modified version of preblem (5-3-1) obtained by substituting Eq. {5-3-1b) with
its linearized form

% =)+ B nxf - xI™Y (5-3-2)

where F/(1) is the Jacobian matrix of f {see Sec. 1-2) evaluated at x/(t), i.c.,

of
Fj(f) =] [a—x]:‘

The initial solution x°(#) may be the solution of Eq. (5-3-1b) with an initial guess
for x{0).

The optimal solution of the problem defined by Egs. (5-3-1a) and (5-3-1¢)
(with x/ instead of x) and Eq. {(5-3-2) can be determined relatively easily, since
xJ{r) is linear in the initial values x/(0). The solution of Eq. (5-3-2) can be
written in the form (see Eq. (1-2-4))

x/{t) = ®(1)x/(0) + a'(1) (5-3-3)
where @/ is the transition matrix of system (5-3-2) and is the solution of
& = Fi(®! (5-3-4)
with initial condition
/D) =1

and a’(1) is that solution of Eq. (5-3-2) which satisfies x/(0) = 0. The minimization
in Eq. (5-3-1a) can easily be performed by putting all derivatives with respect to
x}{0). r = 1,....n, equal to zero and solving the resulting linear algebraic system
(see Sec. 5-1). The linear algebraic system is

9 R N P o)) — v b7 @d =
0 J(x(0)) = ‘g:l - tzo [h; (DH1)x(0)+ a/(1y)) yﬂ]h, ¢l=0

r=1,...,n (5-3-5)

where ¢/ denotes the r-th column of ®J, It can be solved easily using one of the
standard techniques.

The main advantage of the quasilinearization technique is its fast coavergence.
However, whether or not the series of the x/(0} converges normally cannot be
ascertained from the outset, but has to be decided through numerical experimenta-
tion. If it converges, then it is certain that at least a local minimum of J(x(0)) has
been reached. But if the procedure does not converge, then it is not possible to
infer that the parameters and the state of the system are not identifiable (see
Sec. 5-1). Usually, inspection of x/(0) and J(x/(0)) for different j yiclds some
indication of whether there are identifiability problems. If, for instance, x/(0}
varies greatly over j while the value of J(x/(0)) remains almost constant, then it
is probable that the estimate is not unequivocal. The same is the case il the
coefficient matrix of system (5-3-5) becomes singular, since this means that there
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is a whole variety of solutions of Eq. (5-3-5). (The coefficients matrix of Eq. (5-3-5)
is the information matrix of the linearized estimation problem, see Eq. (5-1-10).)
In general, it is fair to say that application of any nonlinear estimation technique,
and hence also of quasilinearization, is an art, at least to a cectain extent. It is
always advisable experimenling with various initial guesses and, if possible, with
different estimation techniques also in order 1o get an estimate in which one
has confidence. In practice, convergence can always be forced by treating a
sufficient number of components of the initial guess x%(0) as measurements. This
can be quile reasonable since often the numerical value of a parameter is roughly
known. One can then pretend to have a measurement of that value and change
the matrix H in Eqs. (5-3-1a)and (5-3-1¢) accordingly {see page 167). The confidence
in that guess can be expressed by selecting appropriately the value of the
corresponding variance.

Several time series of observations which have been obtained from the same
system under different circumstances may be used for the estimation ; steady state
observations along a river for different flow rates and/or temperatures can be
used, for instance. In this case the variables which are affected by a change of
circumstances, have simply to be split into as many variables as there are
observation series.

When determining x/(:) from Eq. (5-3-2) the preceding approximation x/~(¢)
has to be available for the entire range of r. This can be achieved by storing
x/~*(-) as a sufficiently dense table function, though with large systems or long
observation periods the storage requirement may become prohibitive. Integration
at cach iteration of all previousty used equations of type (5-3-2) may be made
instead, thereby trading storage for computing time.

The quasilinearization technique may be modified in the following way: for
the evaluation of f and F in Eq. {5-3-2), the solution of the original system
(5-3-1b) may be used instead of x/~'(t), which is defined by the previous optimal
values x/~'(0)as initial values. This technique is known as Gauss-Newton algorithm
(see Mataudek and Milovanovié, 1973). In this case the celumns of @ in Eq.
(5-3-4) are the sensitivity vectors of the original system with respect to the
initial values, and the nominal solution is defined by x(0) = x/~ *(0) {see Sec. 4-1).
Finally, it should be mentioned that the quasilinearization technique can also be
applied to distributed parameter models.

The Models

As mentioned above, the initial states and the parameters of two models, the
Streeter-Phelps model and the ecological model described in Sec. 4-4, were to
be estimated for a section of the Rhine river. Dispersion was not taken into
account because of the relatively high velocity (see Sec. 4-3). Both models were
augmented by an additional equation for the concentration w, of nondegradable
pollutants, which simply describes the accumulation of those pollutants. Since
the amount of nondegradable waste discharged into the river is assumed to be
known (although its definition is problematic, see Sec. 3-5) these equations are
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not at all involved in the estimation procedure. In the final results, however,
this waste component is always included (see, for example, Fig. 5-3-5), since later
on {Sec. 8-4} it must be taken into account. In principle, it would be possible to
dispense with the nondegradable waste [raction as a separate variable and include
it instead in the slowly degradable fraction. What is said on identifiability of the

models in the lollowing would essentiafly remain true in this case, and the fit 10 -

the measured data would deteriorate only slightly. The models were also
augmented by an additive constant in the oxygen equation, 1o account for biogenic
aeration (see Fig. 5-3-5).

The measurements on which the estimation had to be based were total
COD, bacterial mass density, protozoan mass density, and oxygen concentration
{see Sec. 4-4). They are very fragmentary and in several cases they even had to
be derived [rom other measurements (Stehfest, 1973). The total COD measure-
ments, for instance, had to be derived from measurements of the dissolved COD
and measurements of particulate organic matter, the COD of the latter having to
be estimated.

The wastewater discharged into the river was assumed to contain dead matter
only. The total amount and the propertien which is nondegradable was assumed
1o be known, while the ratio between easily and slowly degradable components
in the ecological model, which is not measurable, was subject to the estimation
procedure. Figure 5-3-2 depicts the assumptions on the BOD of pollutants
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Figure 5-3-2 Estimated discharge of degradable COD into the Rhine river between Mannheim/
Ludwigshafen and the Dutch-German border.
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catering the river per river-km and hour. The river section between Mannheim/
Ludwigshafen and the Dulch-German border was divided into 12 reaches
within which the discharge was assumed to be equally distributed along the
river. In Fig. 5-3-2 the major pollution sources along the Rhine river are clearly
recognizable: the cities of Mannheim and Ludwigshafen at the mouth of the
heavily polluted Neckar river, with large chemical industries and pulp mills;
the cities of Mainz and Wiesbaden at the mouth of the Main river which is
extremely polluted by chemical industries and pulp mills; the area of Bonn,
Cologne, and Leverkusen also having many chemical industries; and finally the
heavily industrialized Ruhr district. The pollutants brought in by the affluents
are included in Fig. 5-3-2. The composition of the wastewater, ie., the pro-
portions between easily, slowly, and nondegradable components, are assumed to
be constant everywhere, which is quite a rough approximation. The total amounts
of COD production in Fig. 5-3-2 are also relatively rough estimates; they refer to
1970. On the assumption that all discharges in Fig. 5-3-2 are due to the domestic,
industrial, and agricultural activity of 35 million inhabitants (which is reaiistic),
a production of approximately 600 g COD/(capita - day) results. This seems to be
fairly high, in particular, in view of the fact that the values of Fig. 5-3-2 are
lower than the actual production, since part of the COD produced has already
been removed by treatment plants and by self-purification in the affluents. In
Loffler-Ertel and Reichert (1975) considerably lower estimates are given, but the
authors emphasize the great uncertainties in the data. In Roberts and Kreijei
(1975) a daily TOC production (see Sec. 3-5), for the Glatt valley in Switzerland,
of 200 g per capita was estimated for the year 2000, which corresponds roughly
10 600 g COD. The main industries in this region are metal working and machine
building industries, which produce less organic pollution than the chemical and
pulp industries, which determine the pollutional situation of the Rhine river.

The quantities characterizing the hydrology, namely, the lateral inflow g
and velocily v, were also assumed to be given and constant within the reaches.
Figure 5-3-3 shows some of the hydrologic characteristics of the Rhine river.

The two models, written in flow time, are as follows:

Streeter-Phelps model
b= ~kyb+ 5 (L — gb) (5-3-6a)
Wy = 5 (aL — gws) (5-3-6b)

¢ = (kay + kgav)(c, — <) —kub+5(L,—qc) + 8 {5-3-6¢)

Q=q (5-3-6d)
bl0) = koy, w3(0) = wio, c(0) = kg3, Q(0) = Qg
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Ecological model
W= kg B+ é (ky2L — qw,) (5-3-7a)
Wy = —Kk3,1g,8 + 5 (0 = k2L - gw,) (5-3-7b)
Wy = = (al — qws) {5-3-7c)
g
B= (9, + g = kag)B - KigsP + 5 (Ls — 4B) (5-3-7d)
P=(gs—ks)P + 5 (Lp — qP) (5-3-7)

¢ = (ko1 + keav)(c, — ©) — (ksagy + keagz + koskis)B
— (Ksegs + Kerks3)P + f§ + 5 (Le—qo)  (53-T0)

O=qv (5-3-7g)
where

kiyw, 42 koyw, 518

91 ke + wy TKeatwyt kg, P k4B

wi(0) = kgy, wa(0) = koz, w3(0) = wip, B{0) = kos, P(0) = Kos,
c{0) = kog. 0{0) = Qo

All k;/s are quantities which are subject to optimal estimation. The primes on
some of the ks will be explained later. The quantities L, Ly, Lp, and L, denote
the distributed loads (in flow time) of poltutants, bacterial mass, protozoan mass,
and dissolved oxygen, respectively, which are added to the river as components
of all kinds of affluxes. All these functions are assumed to be reachwise constant.
The quantity a gives the ratio between the COD of the nondegradable pollutants
and L, so that (1 + &)L is the total COD distributed load of the pollutants. The
constant f in Eq. (5-3-71) accounts for biogenic aeration and its numerical value
was derived from measurements during summertime.

The composition of the pollution input is defined by the values of the
parameters o and k,,. For all reaches which do not receive major tributaries
these values were assumed to be the same, i.c,, the assumption is made that the
wastewater has the same composition everywhere and is directly discharged into
the Rhine river. For reaches 2,4, and 7, where major tributaries flow in, the values
of o and k,, were modified empirically for the effects of self-purification of the
tributaries (k;; becomes smaller, while a increases). Similarly, the values of L,
for those three reaches were chosen according to the quality of the tributaries.
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In all other cases, the admixture terms (i.e, the last terms in Egs. (5-3-6¢),
{5-3-7d)- (5-3-70) were assumed 1o vanish, which means that any lateral inflow
has the same concentration of bacterial mass, protozoan mass, and oxygen as the
receiving river.

Estimation Results

Figure 5-3-4 shows the result of the estimation for the Streeter-Phelps model.
The quasilinearization technique converged 1o 2 unique set of initial values k;;
over a wide range of initial guesses. Flow rate @ and temperature T were
chosen to be the same as for the ecological model. This was done in order 1o be
able to consistently compare the two models (see Sec. 8-4). For the same reason
the BOD measurements used were the sum of the (w, + w;) values used flor the
ecolagical model and the chemical oxygen demand of bacterial and protozoan
mass; the oxygen observations used are exaclly the same as for the ecological
model. The parameter estimates turned out to be

kiy=0045h"", £;;,=028h"", ky;;=0

The negligible value of k;; means that the physical reacration rate does not
depend significantly upon the velocity variations along the river. The value of
k3, seems to be somewhat high, which is consistent with the statement made
above that the estimates for the input of pollutants are a little high. But it is
stifl within the range marked by numerous publications about reaeration rates of
comparable rivers (see. for example, Negulescu and Rojanski. 1969 ; Bansal, 1973).
There is also very dense shipping traflic on the Rhine river, which considerably
enhances physical reaeration. The fit of the measured data is not very good, and
a recursive estimation {see Sec. 5-5} would clearly have shown variations ol the
paratneter values along the river.
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Figure 534 Description of the sell-purification of the Rhine river hy the Streeter-Phelps model.
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An unambigucus estimation for the ecological model was possible only if
the initial guesses for numerous parameters were treated as observations, because
the number and accuracy of the observations was not sufficient. The optimal
model output together with the measurements is shown in Fig. 5-3-5. Under
the conditions selected for that figure (Q = 1.25MQ, T = 20°C), a relatively large
number of accurate measurements were taken along a characieristic line in the
upper part of the river section. For other Q and T values even fewer measure-
ments were available, and therefore the use of several measurement series (see
p. 161) would not have removed the identifiability problems. The ecological
model obviously fits the observations considerably better than the Streeter-Phelps
model, The validation tests described below also indicate that the ecological
model is more adequate than the Streeter-Phelps model.

The dashed oxygen sag curve in Fig. 5-3-5 shows that the influence of biogenic
aeration on the oxygen balance is relatively small in this part of the Rhine river.
The reasons lor this have already been discussed in Sec. 4-4, One of them is the
great depth of the river: because of this the phytoplankton receives on the average
very little sunlight; this effect is particularly important because of the high
turbidity of the Rhine river. Other reasons for the relative unimportance ol bio-
genic aeration are high velocity and high turbulence of the river. High velocity
simply means that the time for the development of a dense phyloplankton popula-
tion is short. Finally, high turbulence is unfavorable for algal reproduction.

If the measurements from a system are not sufficient to obtain state and
parameter estimates under satisfactory conditions, as in the case described, the
estimation technique may be used as a 100l for planning additional measurements
{see Bellman et al., 1966). Numerical experimentation may show which variables
have to be measured, where, and with what accuracy in order to obtain an
unambiguous state and parameter estimate. The quasilinearization technique was
applied to the ecological model for this purpose: under the assumption of
reasonably dense and accurate measurements of w, + w,, B, P, and ¢ the estima-
tion of the initial values of all variables and of the parameters for model {(5-3-7)
was altempted. Parameters kg, and f, all input and admixture terms, and the
equation for nondegradable pollutants were left out. The measurements were
generated on a computer using a river quality model much more complex than
the one given by Eq. {5-3-7). This model, which is described in Stehfest (1973),
contains 30 different pollutants, alt of them having different degradation kinetics
{mutual inhibitions according to Egs. (3-5-21) and (3-5-22), purely additive
degradation, formation of exoenzymes, see Sec. 3-5), as well as two protozoa
types with different metabolic dynamics. The kinetic parameters were generated
within realistic ranges by a random number generator. It turned out that the
eslimation was not possible in a unique way if all parameters were left completely
free. But il, for instance, a priori estimates for the primed parameters in Eq. (5-3-7)
were considered as measurements, the estimation technique converged, even with
very high variances of the parameter guesses and very noisy measurements. In
selecting the parameters, for which approximate values are to be prescribed, it is
necessary 10 question whether reasonable guesses for the parameters concerned
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Figure 5-3-5 Description of self-purification of the Rhine river by 1he ecological model.
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are available. It is better, for example, to use an approximate value for k,,,
rather than for ky;, because kyy would not be expected to be very much smaller
than the largest known growth rate of bacteria at the given temperature, while
for a complex nutrient mixture, very little can be predicted about k,;. Kinetic
parameters for the interaction between bacteria and protozoa which have been
found in laboratory experiments can alse be used as measured values for the
estimation ; but it is desirable to have the parameter k., totally free, since the
term ks3P is 1o account approximately for the unknown influence of higher
order links of the food chain.

Figure 5-3-6 shows the optimal model solution for noise-free measurements
(u), and measurements distributed by a reasonable noise (). In Fig. 5-3-6a the
initial solution x“{r) is given, which was also used for Fig. 5-3-6b. It can be seen
that the estimation is possible, even if the initial estimale is quite wrong. It should
be emphasized again that the ratio between w, and w; is determined through the
estimation procedure on the basis of measurements of wy + w,, B, P, and ¢ only.

VYalidation Tests

As explained in Sec. 1-3 model validation is an indispensable step for building
any model: good fit lo an observation series alone is not yet very meaningful,
in particular if there are many parameters to be adjusted. It is always necessary
to check il the optimal mode? is able to reproduce measurements which were
taken independently of the ones used for estimation.

Figure 5-3-7 gives an example: in Fig. 5-3-7a that solution of model (5-3-7)
is given which best fits the measurements generated by the complex river model.
In Fig. 5-3-7b both models with the same parameter values but with completely
different initial values for the variables are checked against each other. Since
model (5-3-7) describes well the “observations™ also under changed initial condi-
tions, it may be concluded that the simple medel (5-3-7) is a good approximation
of the complex one.

Some validation tests could also be carried out for the ecological model as
applied to the Rhine river, although the measurements are so sparse (see also
Stehfest, 1978). Figure 5-3-8 shows, for instance, the changes of the model behavior
if temperature is lowered from 20°C to 10°C. Two most remarkable changes
have been confirmed by real measurements: the COD increases more in the
upstream part than in the lower Rhine; and bacterial mass density is almost
constant from river km 550 to 700 at T= 10°C, while at 7= 20°C there was
a decline along this river section. The latter effect has already been mentioned
and explained in Sec. 2-3.

Figure 5-3-9 shows the changes in the model behavior if the flow rate
decreases from 1.25MQ to 0.77MQ. The consequences of this decrcase are
governed by two effects: the dilution ratio for the discharged poflutants is
changed, and the flow times between the potlution sources are changed. Both
effects result in an increase of the pollutants removal over a fixed river section.
This can be seen from the figure and has also been observed in practice. The
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serious deterioration of the oxygen conditions shown by Fig. 5-3-9 also corresponds
to real observations.

Finally, Fig. 5-3-10 gives the model behavior in the case that 50 percent of
the easily degradable component of the wastewater is removed before discharge.
Although this means that as much as about 25 percent of the total COD had
been removed, the COD concentration did not decrease considerably anywhere,
and in certain parts even increased. The reason for this is the decrease of the
growth rate of the bacteria relative to the protozoan consumption rate and to

5-3 QUASILINEARIZATION TECHNIQUE WITH APPLICATION TO THE RHINE RIVER 173

endogenous respiration. This result might be considered as a kind of validation,
since a reduction of the easily degradable components is achieved by biological
treatment plants. The fact that the quality of the Rhine river has not improved
during the last years in spite of remarkable efforts at building biological treatment
plants could possibly be atiributed to this effect.
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Figore $-39 Changes in the sclf-purification behavior of the Rhine river when flow rate is lowered.
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