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-->plot(1:10)

-->xbasc()

-->// simple rectangle

-->xrect(0,1,3,1)

-->// filling a rectangle

-->xfrect(3.1,1,3,1)

-->// writing in the rectangle

-->xstring(0.5,0.5,"xrect(0,1,3,1)")

-->// writing black on black !

-->xstring(4.,0.5,"xfrect(3.1,1,3,1)")

-->// reversing the video

-->xset("alufunction",6)

-->xstring(4.,0.5,"xfrect(3.1,1,3,1)")

-->xset("alufunction",3)

-->// drawing a polyline

-->X=[0 1 2 3 4];

-->Y=[2.5 1.5 1.8 1.3 2.5];

-->xpoly(X,Y,"lines",1)

-->xstring(0.5,2.,"xpoly(X,Y,""lines""

-->// drawing arrows



INTRODUCTION

TO

SCILAB

Scilab Group
INRIA Meta2 Project/ENPC Cergrene

INRIA - Unit�e de recherche de Rocquencourt - Projet Meta2
Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex

(France)
E-mail : scilab@inria.fr
Home page : http://www-rocq.inria.fr/scilab





Contents

1 Introduction 2
1.1 What is Scilab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Software Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Installing Scilab. System Requirements . . . . . . . . . . . . . . . . . . . . 5
1.4 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Scilab at a Glance. A Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Editing a command line . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.3 Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.4 Customizing your Scilab . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.5 Sample Session for Beginners . . . . . . . . . . . . . . . . . . . . . . 8

2 Data Types 21
2.1 Special Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Constant Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Matrices of Character Strings . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Polynomials and Polynomial Matrices . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Rational polynomial simpli�cation . . . . . . . . . . . . . . . . . . . 30
2.5 Boolean Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Linear system representation . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Functions (Macros) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.11 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.12 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.12.1 Indexing in matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.12.2 Indexing in lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Programming 56
3.1 Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Comparison Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.2 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 De�ning and Using Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.1 Function Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Loading Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.3 Global and Local Variables . . . . . . . . . . . . . . . . . . . . . . . 61

i



3.2.4 Special Function Commands . . . . . . . . . . . . . . . . . . . . . . 62
3.3 De�nition of Operations on New Data Types . . . . . . . . . . . . . . . . . 64
3.4 Debbuging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Basic Primitives 67
4.1 The Environment and Input/Output . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.2 Startup Commands by the User . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Useful functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Nonlinear Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Nonlinear Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Argument functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 XWindow Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Tk-Tcl Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Graphics 71
5.1 The Graphics Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 The Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Global Parameters of a Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 2D Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Basic 2D Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.2 Captions and Presentation . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.3 Specialized 2D Plottings . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.4 Plotting Some Geometric Figures . . . . . . . . . . . . . . . . . . . . 82
5.4.5 Writting by Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.6 Some Classical Graphics for Automatic Control . . . . . . . . . . . . 85
5.4.7 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 3D Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Generic 3D Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.2 Specialized 3D Plotting . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.3 Mixing 2D and 3D graphics . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.4 Sub-windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.5 A Set of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Printing and Inserting Scilab Graphics in LATEX . . . . . . . . . . . . . . . . 91
5.6.1 Window to Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.2 Creating a Postscript File . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.3 Including a Postscript File in LATEX . . . . . . . . . . . . . . . . . . 92
5.6.4 Postscript by Using X�g . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.5 Encapsulated Postscript Files . . . . . . . . . . . . . . . . . . . . . . 96

6 Interfacing C or Fortran programs 97
6.1 Using dynamic link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Dynamic link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.2 Calling a dynamically linked program . . . . . . . . . . . . . . . . . 98

6.2 Interface programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.1 Building an interface program . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



1

6.2.3 addinter command . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Intersci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Using Intersci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 The routines/default directory . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Argument functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5 Maple to Scilab Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6 Maple2scilab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6.1 Simple Scalar Example . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.6.2 Matrix Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Chapter 1

Introduction

1.1 What is Scilab

Developed at INRIA, Scilab has been developed for system control and signal processing
applications. It is freely distributed in source code format (see the �le notice.tex).

Scilab is made of three distinct parts: an interpreter, libraries of functions (Scilab pro-
cedures) and libraries of Fortran and C routines. These routines (which, strictly speaking,
do not belong to Scilab but are interactively called by the interpreter) are of independent
interest and most of them are available through Netlib. A few of them have been slightly
modi�ed for better compatibility with Scilab's interpreter.

A key feature of the Scilab syntax is its ability to handle matrices: basic matrix ma-
nipulations such as concatenation, extraction or transpose are immediately performed as
well as basic operations such as addition or multiplication. Scilab also aims at handling
more complex objects than numerical matrices. For instance, control people may want to
manipulate rational or polynomial transfer matrices. This is done in Scilab by manipu-
lating lists and typed lists which allows a natural symbolic representation of complicated
mathematical objects such as transfer functions, linear systems or graphs (see Section 2.6).

Polynomials, polynomials matrices and transfer matrices are also de�ned and the syn-
tax used for manipulating these matrices is identical to that used for manipulating constant
vectors and matrices.

Scilab provides a variety of powerful primitives for the analysis of non-linear systems.
Integration of explicit and implicit dynamic systems can be accomplished numerically. The
scicos toolbox allows the graphic de�nition and simulation of complex interconnected
hybrid systems.

There exist numerical optimization facilities for non linear optimization (including non
di�erentiable optimization), quadratic optimization and linear optimization.

Scilab has an open programming environment where the creation of functions and
libraries of functions is completely in the hands of the user (see Chapter 3). Functions
are recognized as data objects in Scilab and, thus, can be manipulated or created as other
data objects. For example, functions can be de�ned inside Scilab and passed as input or
output arguments of other functions.

In addition Scilab supports a character string data type which, in particular, allows
the on-line creation of functions. Matrices of character strings are also manipulated with
the same syntax as ordinary matrices.

Finally, Scilab is easily interfaced with Fortran or C subprograms. This allows use of
standardized packages and libraries in the interpreted environment of Scilab.

2
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The general philosophy of Scilab is to provide the following sort of computing environ-
ment:

� To have data types which are varied and 
exible with a syntax which is natural and
easy to use.

� To provide a reasonable set of primitives which serve as a basis for a wide variety of
calculations.

� To have an open programming environment where new primitives are easily added.
A useful tool distributed with Scilab is intersci which is a tool for building interface
programs to add new primitives i.e. to add new modules of Fortran or C code into
Scilab.

� To support library development through \toolboxes" of functions devoted to speci�c
applications (linear control, signal processing, network analysis, non-linear control,
etc.)

The objective of this introduction manual is to give the user an idea of what Scilab
can do. On line documentation on all functions is available (help command).

1.2 Software Organization

Scilab is divided into a set of directories. The main directory SCIDIR contains the
�les scilab.star (startup �le), the copyright �le notice.tex, and the configure �le
(see(1.3)). The subdirectories are the following:

� bin is the directory of the executable �les. The starting script scilab on Unix/Linux
systems and runscilab.exe on Windows95/NT, The executable code of Scilab:
scilex on Unix/Linux systems and scilex.exe on Windows95/NT are there. This
directory also contains Shell scripts for managing or printing Postscript/LATEX �les
produced by Scilab.

� demos is the directory of demos. The �le alldems.dem allows to add a new demo
which can be run by clicking the \Demos" button. This directory contains the
codes corresponding to various demos. They are often useful for inspiring new users.
Most of plot commands are illustrated by simple demo examples. Note that running
a graphic function without input parameter provides an example of use for this
function (for instance plot2d() displays an example for using plot2d function).

� examples contains useful examples of how to link external programs to scilab, using
dynamic link or intersci

� doc is the directory of the Scilab documentation: LATEX , dvi and Postscript �les.
This documentation is SCIDIR/doc/intro/intro.tex.

� geci contains source code and binaries for GeCI which is an interactive communica-
tion manager created in order to manage remote executions of softwares and allow
exchanges of messages beetwen those programs. It o�ers the possibility to exploit
numerous machines on a network, as a virtual computer, by creating a distributed
group of independent softwares (help communications for a detailed description).
GeCI is used for the link of Xmetanet with Scilab.
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� pvm3 contains source code and binaries of the PVM version 3 which is another
interactive communication manager.

� imp is the directory of the routines managing the Postscript �les for print.

� libs contains the Scilab libraries (compiled code).

� macros contains the libraries of functions which are available on-line. New libraries
can easily be added (see the Make�le). This directory is divided into a number of sub-
directories which contain \Toolboxes" for control, signal processing, etc... Strictly
speaking Scilab is not organized in toolboxes : functions of a speci�c subdirectory
can call functions of other directories; so, for example, the subdirectory signal is
not self-contained but its functions are all devoted to signal processing.

� man is the directory containing the manual divided into submanuals, corresponding
to the on-line help and to a LATEX format of the reference manual. The LATEX code
is produced by a translation of the Unix format Scilab manual (see the subdirectory
SCIDIR/man). To get information about an item, one should enter help item in
Scilab or use the help window facility obtained with help button. To get information
corresponding to a key-word, one should enter apropos key-word or use apropos

in the help window. All the items and key-words known by the help and apropos

commands are in .cat and whatis �les located in the man subdirectories.

To add new items to the help and apropos commands the user can extend the list
of directories available to the help browser by adapting the variable %helps. See the
README �le in the man directory and the example given in examples/man-examples
directory

� maple is the directory which contains the source code of Maple functions which
allow the transfer of Maple objects into Scilab functions. For eÆciency, the transfer
is made through Fortran code generation which is dynamically linked to Scilab.

� routines is a directory which contains the source code of all the numerical routines.
The subdirectory default is important since it contains the source code of routines
which are necessary to customize Scilab. In particular user's C or Fortran routines
for ODE/DAE simulation or optimization can be included here (they can be also
dynamically linked).

� examples contains examples of speci�c topics. It is shown in appropriate subdirecto-
ries how to add new C or Fortran program to Scilab (see addinter-tutorial). More
complex examples are given in addinter-examples. The directory mex-examples

contains examples of interfaces realized by emulating the Matlab mex�les. The di-
rectory link-examples illustrates the use of the call function which allows to call
external function within Scilab.

� intersci contains a program which can be used to build interface programs for
adding new Fortran or C primitives to Scilab. This program is executed by the
intersci script in the bin/intersci directory.

� scripts is the directory which contains the source code of shell scripts �les. Note
that the list of printers names known by Scilab is de�ned there by an environment
variable.
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� tests : this directory contains evaluation programs for testing Scilab's installation
on a machine. The �le \demos.tst" tests all the demos.

� wless, xless is the Berkeley �le browsing tool

� xmetanet is the directory which contains xmetanet, a graphic display for networks.
Type metanet() in Scilab to use it.

1.3 Installing Scilab. System Requirements

Scilab is distributed in source code format; binaries for Windows95/NT systems and sev-
eral popular Unix/Linux-XWindow systems are also available: Dec Alpha (OSF V4),
Dec Mips (ULTRIX 4.2), Sun Sparc stations (Sun OS), Sun Sparc stations (Sun Solaris),
HP9000 (HP-UX V10), SGI Mips Irix, PC Linux. All of these binaries versions include
tk/tcl interface.

The installation requirements are the following :
- for the source version: Scilab requires approximately 130Mb of disk storage to unpack

and install (all sources included). You need X Window (X11R4, X11R5 or X11R6, C
compiler and Fortran compiler (e.g. f2c or g77 or Visual C++ for Windows systems).

- for the binary version: the minimum for running Scilab (without sources) is about
40 Mb when decompressed. These versions are partially statically linked and in principle
do not require a fortran compiler.

Scilab uses a large internal stack for its calculations. This size of this stack can be
reduced or enlarged by the stacksize. command. The default dimension of the internal
stack can be adapted by modifying the variable newstacksize in the scilab.star script.

- For more information on the installation, please look at the README �les

1.4 Documentation

The documentation is made of this User's guide (Introduction to Scilab) and the Scilab
on-line manual. There are also reports devoted to speci�c toolboxes: Scicos (graphic
system builder and simulator), Signal (Signal processing toolbox), Lmitool (interface for
LMI problems), Metanet (graph and network toolbox). An FAQ is available at Scilab
home page (http://www-rocq.inria.fr/scilab).

1.5 Scilab at a Glance. A Tutorial

1.5.1 Getting Started

Scilab is called by running the scilab script in the directory SCIDIR/bin (SCIDIR denotes
the directory where Scilab is installed). This shell script runs Scilab in an Xwindow
environment (this script �le can be invoked with speci�c parameters such as -nw for \no-
window"). You will immediatly get the Scilab window with the following banner and
prompt represented by the --> :

===========

S c i l a b

===========
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Scilab-2.x ( 12 July 1998 )

Copyright (C) 1989-98 INRIA

Startup execution:

loading initial environment

-->

A �rst contact with Scilab can be made by clicking on Demos with the left mouse
button and clicking then on Introduction to SCILAB : the execution of the session is
then done by entering empty lines and can be stopped with the buttons Stop and Abort.

Several libraries (see the SCIDIR/scilab.star �le) are automatically loaded.
To give the user an idea of some of the capabilities of Scilab we will give later a sample

session in Scilab.

1.5.2 Editing a command line

Before the sample session, we brie
y present how to edit a command line. You can enter
a command line by typing after the prompt or clicking with the mouse on a part on a
window and copy it at the prompt in the Scilab window. The usual Emacs commands are
at your disposal for modifying a command (Ctrl-<chr> means hold the CONTROL key
while typing the character <chr>), for example:

� Ctrl-p recall previous line

� Ctrl-n recall next line

� Ctrl-b move backward one character

� Ctrl-f move forward one character

� Delete delete previous character

� Ctrl-h delete previous character

� Ctrl-d delete one character (at cursor)

� Ctrl-a move to beginning of line

� Ctrl-e move to end of line

� Ctrl-k delete to the end of the line

� Ctrl-u cancel current line

� Ctrl-y yank the text previously deleted

� !prev recall the last command line which begins by prev
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� Ctrl-c interrupt Scilab and pause after carriage return. Clicking on the Control/stop
button enters a Ctrl-c.

As said before you can also cut and paste using the mouse. This way will be useful
if you type your commands in an editor. Another way to \load" �les containing Scilab
statements is available with the File/File Operations button.

1.5.3 Buttons

The Scilab window has the following Control buttons.

� Stop interrupts execution of Scilab and enters in pause mode

� Resume continues execution after a pause entered as a command in a function or
generated by the Stop button or Control C.

� Abort aborts execution after one (or several) pause, and returns to top-level prompt

� Restart clears all variables and executes startup �les

� Quit quits Scilab

� Kill kills Scilab shell script

� Demos for interactive run of some demos

� File Operations facility for loading functions or data into Scilab, or executing script
�les.

� Help : invokes on-line help with the tree of the man and the names of the corre-
sponding items. It is possible to type directly help <item> in the Scilab window.

� Graphic Window : select active graphic window

New buttons can be added by the addmenu command. Note that the command SCIDIR/bin/scilab
-nw invokes Scilab in the \no-window" mode.

1.5.4 Customizing your Scilab

The parameters of the di�erent windows opened by Scilab can be easily changed. The
way for doing that is to edit the �les contained in the directory X11-defaults. The �rst
possibility is to directly customize these �les. Another way is to copy the right lines with
the modi�cations in the .Xdefaults �le of the home directory. These modi�cations are
activated by starting again Xwindow or with the command xrdb .Xdefaults. Scilab will
read the .Xdefaults �le: the lines of this �le will cancel and replace the corresponding
lines of X11-defaults.

A simple example :

Xscilab.color*Scrollbar.background:red

Xscilab*vpane.height: 500

Xscilab*vpane.width: 500

in .Xdefaults will change the 500x650 window to a square window of 500x500 and
the scrollbar background color changes from green to red.

An important parameter for customizing Scilab is stacksize discussed in 1.3.
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1.5.5 Sample Session for Beginners

We present now some simple commands. At the carriage return all the commands typed
since the last prompt are interpreted.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->a=1;

-->A=2;

-->a+A

ans =

3.

-->//Two commands on the same line

-->c=[1 2];b=1.5

b =

1.5

-->//A command on several lines

-->u=1000000*(a*sin(A))^2+...

--> 2000000*a*b*sin(A)*cos(A)+...

--> 1000000*(b*cos(A))^2

u =

81268.994

Give the values of 1 and 2 to the variables a and A . The semi-colon at the end of the
command suppresses the display of the result. Note that Scilab is case-sensitive. Then
two commands are processed and the second result is displayed because it is not followed
by a semi-colon. The last command shows how to write a command on several lines by
using \...". This sign is only needed in the on-line typing for avoiding the e�ect of the
carriage return. The chain of characters which follow the // is not interpreted (it is a
comment line).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->a=1;b=1.5;

-->2*a+b^2

ans =

4.25
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-->//We have now created variables and can list them by typing:

-->who

your variables are...

ans b a bugmes %helps scicos_pal

MSDOS home PWD TMPDIR percentlib

fraclablib soundlib xdesslib utillib tdcslib siglib

s2flib roblib optlib metalib elemlib commlib polylib

autolib armalib alglib intlib mtlblib SCI %F

%T %z %s %nan %inf old

newstacksize $ %t %f %eps %io

%i %e

using 4849 elements out of 1000000.

and 46 variables out of 1071

We get the list of previously de�ned variables a b c A together with the initial envi-
ronment composed of the di�erent libraries and some speci�c \permanent" variables.

Below is an example of an expression which mixes constants with existing variables.
The result is retained in the standard default variable ans.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->I=1:3

I =

! 1. 2. 3. !

-->W=rand(2,4);

-->W(1,I)

ans =

! 0.2113249 0.0002211 0.6653811 !

-->W(:,I)

ans =

! 0.2113249 0.0002211 0.6653811 !

! 0.7560439 0.3303271 0.6283918 !

-->W($,$-1)

ans =

0.6283918
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De�ning I, a vector of indices, W a random 2 x 4 matrix, and extracting submatrices
from W. The $ symbol stands for the last row or last column index of a matrix or vector.
The colon symbol stands for \all rows" or \all columns".
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->sqrt([4 -4])

ans =

! 2. 2.i !

Calling a function (or primitive) with a vector argument. The response is a complex
vector.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->p=poly([1 2 3],'z','coeff')

p =

2

1 + 2z + 3z

-->//p is the polynomial in z with coefficients 1,2,3.

-->//p can also be defined by :

-->s=poly(0,'s');p=1+2*s+s^2

p =

2

1 + 2s + s

A more complicated command which creates a polynomial.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->M=[p, p-1; p+1 ,2]

M =

! 2 2 !

! 1 + 2s + s 2s + s !

! !

! 2 !

! 2 + 2s + s 2 !

-->det(M)
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ans =

2 3 4

2 - 4s - 4s - s

De�nition of a polynomial matrix. The syntax for polynomial matrices is the same as
for constant matrices. Calculation of the determinant of the polynomial matrix by the
det function.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->F=[1/s ,(s+1)/(1-s)

--> s/p , s^2 ]

F =

! 1 1 + s !

! - ----- !

! s 1 - s !

! !

! 2 !

! s s !

! --------- - !

! 2 !

! 1 + 2s + s 1 !

-->F('num')

ans =

! 1 1 + s !

! !

! 2 !

! s s !

-->F('den')

ans =

! s 1 - s !

! !

! 2 !

! 1 + 2s + s 1 !

-->F('num')(1,2)

ans =

1 + s
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De�nition of a matrix of rational polynomials. (The internal representation of F is a
typed list of the form tlist('the type',num,den) where num and den are two matrix
polynomials). Retrieving the numerator and denominator matrices of F by extraction
operations in a typed list. Last command is the direct extraction of entry 1,2 of the
numerator matrix F('num').
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->pause

-1->pt=return(s*p)

-->pt

pt =

2 3

s + 2s + s

Here we move into a new environment using the command pause and we obtain the
new prompt -1-> which indicates the level of the new environment (level 1). All variables
that are available in the �rst environment are also available in the new environment.
Variables created in the new environment can be returned to the original environment by
using return. Use of return without an argument destroys all the variables created in
the new environment before returning to the old environment. The pause facility is very
useful for debugging purposes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->F21=F(2,1);v=0:0.01:%pi;frequencies=exp(%i*v);

-->response=freq(F21('num'),F21('den'),frequencies);

-->plot2d(v',abs(response)',[-1],'011',' ',[0,0,3.5,0.7],[5,4,5,7]);

-->xtitle(' ','radians','magnitude');

De�nition of a rational polynomial by extraction of an entry of the matrix F de�ned
above. This is followed by the evaluation of the rational polynomial at the vector of com-
plex frequency values de�ned by frequencies. The evaluation of the rational polynomial
is done by the primitive freq. F12('num') is the numerator polynomial and F12('den')

is the denominator polynomial of the rational polynomial F12. Note that the polyno-
mial F12('num') can be also obtained by extraction from the matrix F using the syntax
F('num')(1,2). The visualization of the resulting evaluation is made by using the basic
plot command plot2d (see Figure 1.1).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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-->w=(1-s)/(1+s);f=1/p

f =

1

---------

2

1 + 2s + s

-->horner(f,w)

ans =

2

1 + 2s + s

----------

4

The function horner performs a (possibly symbolic) change of variables for a polyno-
mial (for example, here, to perform the bilinear transformation f(w(s))).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->A=[-1,0;1,2];B=[1,2;2,3];C=[1,0];

-->Sl=syslin('c',A,B,C);

-->ss2tf(Sl)

ans =

! 1 2 !

! ----- ----- !

! 1 + s 1 + s !

De�nition of a linear system in state-space representation. The function syslin de�nes
here the continuous time ('c') system Sl with state-space matrices (A,B,C). The function
ss2tf transforms Sl into transfer matrix representation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->s=poly(0,'s');

-->R=[1/s,s/(1+s),s^2]

R =

! 2 !

! 1 s s !
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! - ----- - !

! s 1 + s 1 !

-->Sl=syslin('c',R);

-->tf2ss(Sl)

ans =

ans(1) (state-space system:)

!lss A B C D X0 dt !

ans(2) = A matrix =

! - 0.5 - 0.5 !

! - 0.5 - 0.5 !

ans(3) = B matrix =

! - 1. 1. 0. !

! 1. 1. 0. !

ans(4) = C matrix =

! - 1. 0. !

ans(5) = D matrix =

! 2 !

! 0 1 s !

ans(6) = X0 (initial state) =

! 0. !

! 0. !

ans(7) = Time domain =

c

De�nition of the rational matrix R. Sl is the continuous-time linear system with (im-
proper) transfer matrix R. tf2ss puts Sl in state-space representation with a polynomial
D matrix. Note that linear systems are represented by speci�c typed lists (with 7 entries).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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-->sl1=[Sl;2*Sl+eye()]

sl1 =

! 2 !

! 1 s s !

! - ----- - !

! s 1 + s 1 !

! !

! 2 !

! 2 + s 2s 2s !

! ----- ---- --- !

! s 1 + s 1 !

-->size(sl1)

ans =

! 2. 3. !

-->size(tf2ss(sl1))

ans =

! 2. 3. !

sl1 is the linear system in transfer matrix representation obtained by the parallel
inter-connection of Sl and 2*Sl +eye(). The same syntax is valid with Sl in state-space
representation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->deff('[Cl]=compen(Sl,Kr,Ko)',[ '[A,B,C,D]=abcd(Sl);';

--> 'A1=[A-B*Kr ,B*Kr; 0*A ,A-Ko*C]; Id=eye(A);';

--> 'B1=[B; 0*B];';

--> 'C1=[C ,0*C];Cl=syslin(''c'',A1,B1,C1)' ])

On-line de�nition of a function, called compen which calculates the state space rep-
resentation (Cl) of a linear system (Sl) controlled by an observer with gain Ko and a
controller with gain Kr. Note that matrices are constructed in block form using other
matrices.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->A=[1,1 ;0,1];B=[0;1];C=[1,0];Sl=syslin('c',A,B,C);

-->Cl=compen(Sl,ppol(A,B,[-1,-1]),...

--> ppol(A',C',[-1+%i,-1-%i])');
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-->Aclosed=Cl('A'),spec(Aclosed)

Aclosed =

! 1. 1. 0. 0. !

! - 4. - 3. 4. 4. !

! 0. 0. - 3. 1. !

! 0. 0. - 5. 1. !

ans =

! - 1. !

! - 1. !

! - 1. + i !

! - 1. - i !

Call to the function compen de�ned above where the gains were calculated by a call
to the primitive ppol which performs pole placement. The resulting Aclosed matrix
is displayed and the placement of its poles is checked using the primitive spec which
calculates the eigenvalues of a matrix. (The function compen is de�ned here on-line by
deff as an example of function which receive a linear system (Sl) as input and returns a
linear system (Cl) as output. In general Scilab functions are de�ned in �les and loaded in
Scilab by getf).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->//Saving the environment in a file named : myfile

-->save('myfile')

-->//Request to the host system to perform a system command

-->unix_s('rm myfile')

-->//Request to the host system with output in this Scilab window

-->unix_w('date')

gio feb 3 16:49:28 CET 2000

Relation with the Unix environment.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->foo=['void foo(a,b,c)';

--> 'double *a,*b,*c;'

--> '{ *c = *a + *b;}']

foo =
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!void foo(a,b,c) !

! !

!double *a,*b,*c; !

! !

!{ *c = *a + *b;} !

-->//A 3 x 1 matrix of strings

-->write('foo.c',foo); //Editing

-->unix_s('make foo.o') //Compiling

-->link('foo.o','foo','C'); //Dynamic link

-->//On line definition of myplus function.

-->//(Calling external C code).

-->deff('[c]=myplus(a,b)',...

--> 'c=call(''foo'',a,1,''d'',b,2,''d'',''out'',[1,1],3,''d'')')

-->myplus(5,7)

ans =

12.

De�nition of a column vector of character strings used for de�ning a C function �le.
The routine is compiled (needs a compiler), dynamically linked to Scilab by the link

command, and interactively called by the function myplus.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->deff('[ydot]=f(t,y)','ydot=[a-y(2)*y(2) -1;1 0]*y')

-->a=1;y0=[1;0];t0=0;instants=0:0.02:20;

-->y=ode(y0,t0,instants,f);

-->plot2d(y(1,:)',y(2,:)',[-1],'011',' ',[-3,-3,3,3],[10,2,10,2])

-->xtitle('Van der Pol')

De�nition of a function which calculates a �rst order vector di�erential f(t,y). This
is followed by the de�nition of the constant a used in the function. The primitive ode then
integrates the di�erential equation de�ned by the Scilab function f(t,y) for y0=[1;0] at
t=0 and where the solution is given at the time values t = 0; :02; :04; : : : ; 20. (Function f
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can be de�ned as a C or Fortran program). The result is plotted in Figure 1.2 where the
�rst element of the integrated vector is plotted against the second element of this vector.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->m=['a' 'cos(b)';'sin(a)' 'c']

m =

!a cos(b) !

! !

!sin(a) c !

-->//m*m' --> error message : not implemented in scilab

-->deff('[x]=%c_m_c(a,b)',['[l,m]=size(a);[m,n]=size(b);x=[];';

--> 'for j=1:n,y=[];';

--> 'for i=1:l,t='' '';';

--> 'for k=1:m;';

--> 'if k>1 then t=t+''+(''+a(i,k)+'')*''+''(''+b(k,j)+'')'';';

--> 'else t=''('' + a(i,k) + '')*'' + ''('' + b(k,j) + '')'';';

--> 'end,end;';

--> 'y=[y;t],end;';

--> 'x=[x y],end,'])

-->m*m'

ans =

!(a)*(a)+(cos(b))*(cos(b)) (a)*(sin(a))+(cos(b))*(c) !

! !

!(sin(a))*(a)+(c)*(cos(b)) (sin(a))*(sin(a))+(c)*(c) !

De�nition of a matrix containing character strings. By default, the operation of sym-
bolic multiplication of two matrices of character strings is not de�ned in Scilab. However,
the (on-line) function de�nition for %cmc de�nes the multiplication of matrices of character
strings (note that the double quote is necessary because the body of the deff contains
quotes inside of quotes). The % which begins the function de�nition for %cmc allows the
de�nition of an operation which did not previously exist in Scilab, and the name cmc

means \chain multiply chain". This example is not very useful: it is simply given to show
how operations such as * can be de�ned on complex data structures by mean of scpeci�c
Scilab functions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->deff('[y]=calcul(x,method)','z=method(x),y=poly(z,''x'')')

-->deff('[z]=meth1(x)','z=x')

-->deff('[z]=meth2(x)','z=2*x')
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-->calcul([1,2,3],meth1)

ans =

2 3

- 6 + 11x - 6x + x

-->calcul([1,2,3],meth2)

ans =

2 3

- 48 + 44x - 12x + x

A simple example which illustrates the passing of a function as an argument to another
function. Scilab functions are objects which may be de�ned, loaded, or manipulated as
other objects such as matrices or lists.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->quit

Exit from Scilab.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 1.1: A Simple Response
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Chapter 2

Data Types

Scilab recognizes several data types. Scalar objects are constants, booleans, polynomials,
strings and rationals (quotients of polynomials). These objects in turn allow to de�ne
matrices which admit these scalars as entries. Other basic objects are lists, typed-lists
and functions. Only constant and boolean sparse matrices are de�ned. The objective of
this chapter is to describe the use of each of these data types.

2.1 Special Constants

Scilab provides special constants %i, %pi, %e, and %eps as primitives. The %i constant rep-
resents

p
�1, %pi is � = 3:1415927 � � � , %e is the trigonometric constant e = 2:7182818 � � �,

and %eps is a constant representing the precision of the machine (%eps is the biggest
number for which 1+ %eps = 1). %inf and %nan stand for \In�nity" and \NotANumber"
respectively. %s is the polynomial s=poly(0,'s') with symbol s.

(More generally, given a vector rts, p=poly(rts,'x') de�nes the polynomial p(x)
with variable x and such that roots(p) = rts).

Finally boolean constants are %t and %f which stand for \true" and \false" respectively.
Note that %t is the same as 1==1 and %f is the same as ~%t.

These variables are considered as \prede�ned". They are protected, cannot be deleted
and are not saved by the save command. It is possible for a user to have his own \pre-
de�ned" variables by using the predef command. The best way is probably to set these
special variables in his own startup �le <home dir>/.scilab. Of course, the user can use
e.g. i=sqrt(-1) instead of %i.

2.2 Constant Matrices

Scilab considers a number of data objects as matrices. Scalars and vectors are all con-
sidered as matrices. The details of the use of these objects are revealed in the following
Scilab sessions.

Scalars Scalars are either real or complex numbers. The values of scalars can be assigned
to variable names chosen by the user.

--> a=5+2*%i

a =

21
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5. + 2.i

--> B=-2+%i;

--> b=4-3*%i

b =

4. - 3.i

--> a*b

ans =

26. - 7.i

-->a*B

ans =

- 12. + i

Note that Scilab evaluates immediately lines that end with a carriage return. Instructions
that ends with a semi-colon are evaluated but are not displayed on screen.

Vectors The usual way of creating vectors is as follows, using commas (or blanks) and
semi-columns:

--> v=[2,-3+%i,7]

v =

! 2. - 3. + i 7. !

--> v'

ans =

! 2. !

! - 3. - i !

! 7. !

--> w=[-3;-3-%i;2]

w =

! - 3. !

! - 3. - i !

! 2. !

--> v'+w

ans =

! - 1. !
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! - 6. - 2.i !

! 9. !

--> v*w

ans =

18.

--> w'.*v

ans =

! - 6. 8. - 6.i 14. !

Notice that vector elements that are separated by commas (or by blanks) yield row vectors
and those separated by semi-colons give column vectors. The empty matrix is [] ; it has
zero rows and zero columns. Note also that a single quote is used for transposing a vec-
tor (one obtains the complex conjugate for complex entries). Vectors of same dimension
can be added and subtracted. The scalar product of a row and column vector is demon-
strated above. Element-wise multiplication (.*) and division (./) is also possible as was
demonstrated.

Note with the following example the role of the position of the blank:

-->v=[1 +3]

v =

! 1. 3. !

-->w=[1 + 3]

w =

! 1. 3. !

-->w=[1+ 3]

w =

4.

-->u=[1, + 8- 7]

u =

! 1. 1. !

Vectors of elements which increase or decrease incrementely are constructed as follows

--> v=5:-.5:3

v =

! 5. 4.5 4. 3.5 3. !
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The resulting vector begins with the �rst value and ends with the third value stepping
in increments of the second value. When not speci�ed the default increment is one. A
constant vector can be created using the ones and zeros facility

--> v=[1 5 6]

v =

! 1. 5. 6. !

--> ones(v)

ans =

! 1. 1. 1. !

--> ones(v')

ans =

! 1. !

! 1. !

! 1. !

--> ones(1:4)

ans =

! 1. 1. 1. 1. !

--> 3*ones(1:4)

ans =

! 3. 3. 3. 3. !

-->zeros(v)

ans =

! 0. 0. 0. !

-->zeros(1:5)

ans =

! 0. 0. 0. 0. 0. !

Notice that ones or zeros replace its vector argument by a vector of equivalent dimensions
�lled with ones or zeros.

Matrices Row elements are separated by commas or spaces and column elements by
semi-colons. Multiplication of matrices by scalars, vectors, or other matrices is in the
usual sense. Addition and subtraction of matrices is element-wise and element-wise mul-
tiplication and division can be accomplished with the .* and ./ operators.
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--> A=[2 1 4;5 -8 2]

A =

! 2. 1. 4. !

! 5. - 8. 2. !

--> b=ones(2,3)

b =

! 1. 1. 1. !

! 1. 1. 1. !

--> A.*b

ans =

! 2. 1. 4. !

! 5. - 8. 2. !

--> A*b'

ans =

! 7. 7. !

! - 1. - 1. !

Notice that the ones operator with two real numbers as arguments separated by a comma
creates a matrix of ones using the arguments as dimensions (same for zeros). Matrices
can be used as elements to larger matrices. Furthermore, the dimensions of a matrix can
be changed.

--> A=[1 2;3 4]

A =

! 1. 2. !

! 3. 4. !

--> B=[5 6;7 8];

--> C=[9 10;11 12];

--> D=[A,B,C]

D =

! 1. 2. 5. 6. 9. 10. !

! 3. 4. 7. 8. 11. 12. !

--> E=matrix(D,3,4)

E =
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! 1. 4. 6. 11. !

! 3. 5. 8. 10. !

! 2. 7. 9. 12. !

-->F=eye(E)

F =

! 1. 0. 0. 0. !

! 0. 1. 0. 0. !

! 0. 0. 1. 0. !

-->G=eye(4,3)

G =

! 1. 0. 0. !

! 0. 1. 0. !

! 0. 0. 1. !

! 0. 0. 0. !

Notice that matrix D is created by using other matrix elements. The matrix primitive
creates a new matrix E with the elements of the matrix D using the dimensions speci�ed
by the second two arguments. The element ordering in the matrix D is top to bottom and
then left to right which explains the ordering of the re-arranged matrix in E.

The function eye creates an m � n matrix with 1 along the main diagonal (if the
argument is a matrix E , m and n are the dimensions of E ) .

Sparse constant matrices are de�ned through their nonzero entries (type help sparse

for more details). Once de�ned, they are manipulated as full matrices.

2.3 Matrices of Character Strings

Character strings can be created by using single or double quotes. Concatenation of strings
is performed by the + operation. Matrices of character strings are constructed as ordinary
matrices, e.g. using brackets. A very important feature of matrices of character strings
is the capacity to manipulate and create functions. Furthermore, symbolic manipulation
of mathematical objects can be implemented using matrices of character strings. The
following illustrates some of these features.

--> A=['x' 'y';'z' 'w+v']

A =

!x y !

! !

!z w+v !

--> At=trianfml(A)

At =
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!z w+v !

! !

!0 z*y-x*(w+v) !

--> x=1;y=2;z=3;w=4;v=5;

--> evstr(At)

ans =

! 3. 9. !

! 0. - 3. !

Note that in the above Scilab session the function trianfml performs the symbolic trian-
gularization of the matrix A. The value of the resulting symbolic matrix can be obtained
by using evstr.

A very important aspect of character strings is that they can be used to automatically
create new functions (for more on functions see Section 3.2). An example of automatically
creating a function is illustrated in the following Scilab session where it is desired to study
a polynomial of two variables s and t. Since polynomials in two independent variables are
not directly supported in Scilab, we can construct a new data structure using a list (see
Section 2.6). The polynomial to be studied is (t2 + 2t3)� (t+ t2)s+ ts2 + s3.

-->getf("macros/make_macro.sci");

-->s=poly(0,'s');t=poly(0,'t');

-->p=list(t^2+2*t^3,-t-t^2,t,1+0*t);

-->pst=makefunction(p) //pst is a function t->p (number -> polynomial)

pst =

[p]=pst(t)

-->pst(1)

ans =

2 3

3 - 2s + s + s

Here the polynomial is represented by the command which puts the coeÆcients of the vari-
able s in the list p. The list p is then processed by the function makefunctionwhich makes
a new function pst. The contents of the new function can be displayed and this function
can be evaluated at values of t. The creation of the new function pst is accomplished as
follows

function [newfunction]=makefunction(p)

// Copyright INRIA

num=mulf(makestr(p(1)),'1');
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for k=2:size(p);

new=mulf(makestr(p(k)),'s^'+string(k-1));

num=addf(num,new);

end,

text='p='+num;

deff('[p]=newfunction(t)',text),

function [str]=makestr(p)

n=degree(p)+1;c=coeff(p);str=string(c(1));x=part(varn(p),1);

xstar=x+'^',

for k=2:n,

if c(k)<>0 then,

str=addf(str,mulf(string(c(k)),(xstar+string(k-1))));

end;

end

Here the function makefunction takes the list p and creates the function pst. Inside
of makefunction there is a call to another function makestr which makes the string
which represents each term of the new two variable polynomial. The functions addf and
mulf are used for adding and multiplying strings (i.e. addf(x,y) yields the string x+y).
Finally, the essential command for creating the new function is the primitive deff. The
deff primitive creates a function de�ned by two matrices of character strings. Here the
function p is de�ned by the two character strings '[p]=newfunction(t)' and text where
the string text evaluates to the polynomial in two variables.

2.4 Polynomials and Polynomial Matrices

Polynomials are easily created and manipulated in Scilab. Manipulation of polynomial
matrices is essentially identical to that of constant matrices. The poly primitive in Scilab
can be used to specify the coeÆcients of a polynomial or the roots of a polynomial.

-->p=poly([1 2],'s') //polynomial defined by its roots

p =

2

2 - 3s + s

-->q=poly([1 2],'s','c') //polynomial defined by its coefficients

q =

1 + 2s

-->p+q

ans =

2

3 - s + s
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-->p*q

ans =

2 3

2 + s - 5s + 2s

--> q/p

ans =

1 + 2s

-----------

2

2 - 3s + s

Note that the polynomial p has the roots 1 and 2 whereas the polynomial q has the
coeÆcients 1 and 2. It is the third argument in the poly primitive which speci�es the
coeÆcient 
ag option. In the case where the �rst argument of poly is a square matrix
and the roots option is in e�ect the result is the characteristic polynomial of the matrix.

--> poly([1 2;3 4],'s')

ans =

2

- 2 - 5s + s

Polynomials can be added, subtracted, multiplied, and divided, as usual, but only between
polynomials of same formal variable.

Polynomials, like real and complex constants, can be used as elements in matrices.
This is a very useful feature of Scilab for systems theory.

-->s=poly(0,'s');

-->A=[1 s;s 1+s^2]

A =

! 1 s !

! !

! 2 !

! s 1 + s !

--> B=[1/s 1/(1+s);1/(1+s) 1/s^2]

B =

! 1 1 !

! ------ ------ !

! s 1 + s !

! !
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! 1 1 !

! --- --- !

! 2 !

! 1 + s s !

From the above examples it can be seen that matrices can be constructed from polynomials
and rationals.

2.4.1 Rational polynomial simpli�cation

Scilab automatically performs pole-zero simpli�cations when the the built-in primitive
simp �nds a common factor in the numerator and denominator of a rational polynomial
num/den. Pole-zero simpli�cation is a diÆcult problem from a numerical viewpoint and
simp function is usually conservative. When making calculations with polynomials, it is
sometimes desirable to avoid pole-zero simpli�cations: this is possible by switching Scilab
into a \no-simplify" mode: help simp_mode. The function trfmod can also be used for
simplifying speci�c pole-zero pairs.

2.5 Boolean Matrices

Boolean constants are %t and %f. They can be used in boolean matrices. The syntax is
the same as for ordinary matrices i.e. they can be concatenated, transposed, etc...

Operations symbols used with boolean matrices or used to create boolean matrices are
== and ~.

If B is a matrix of booleans or(B) and and(B) perform the logical or and and.

-->%t

%t =

T

-->[1,2]==[1,3]

ans =

! T F !

-->[1,2]==1

ans =

! T F !

-->a=1:5; a(a>2)

ans =

! 3. 4. 5. !

-->A=[%t,%f,%t,%f,%f,%f];
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-->B=[%t,%f,%t,%f,%t,%t]

B =

! T F T F T T !

-->A|B

ans =

! T F T F T T !

-->A&B

ans =

! T F T F F F !

Sparse boolean matrices are generated when, e.g., two constant sparse matrices are
compared. These matrices are handled as ordinary boolean matrices.

2.6 Lists

Scilab has a list data type. The list is a collection of data objects not necessarily of the
same type. A list can contain any of the already discussed data types (including functions)
as well as other lists. Lists are useful for de�ning structured data objects.

There are two kinds of lists, ordinary lists and typed-lists. A list is de�ned by the list
function. Here is a simple example:

-->L=list(1,'w',ones(2,2)) //L is a list made of 3 entries

L =

L(1)

1.

L(2)

w

L(3)

! 1. 1. !

! 1. 1. !

-->L(3) //extracting entry 3 of list L

ans =

! 1. 1. !

! 1. 1. !
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-->L(3)(2,2) //entry 2,2 of matrix L(3)

ans =

1.

-->L(2)=list('w',rand(2,2)) //nested list: L(2) is now a list

L =

L(1)

1.

L(2)

L(2)(1)

w

L(2)(2)

! 0.6653811 0.8497452 !

! 0.6283918 0.6857310 !

L(3)

! 1. 1. !

! 1. 1. !

-->L(2)(2)(1,2) //extracting entry 1,2 of entry 2 of L(2)

ans =

0.8497452

-->L(2)(2)(1,2)=5; //assigning a new value to this entry.

Typed lists have a speci�c �rst entry. This �rst entry must be a character string
(the type) or a vector of character string (the �rst component is then the type, and the
following elements the names given to the entries of the list). Typed lists entries can be
manipulated by using character strings (the names) as shown below.

-->L=tlist(['Car';'Name';'Dimensions'],'Nevada',[2,3])

L =

L(1)
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!Car !

! !

!Name !

! !

!Dimensions !

L(2)

Nevada

L(3)

! 2. 3. !

-->L('Name') //same as L(2)

ans =

Nevada

-->L('Dimensions')(1,2)=2.3

L =

L(1)

!Car !

! !

!Name !

! !

!Dimensions !

L(2)

Nevada

L(3)

! 2. 2.3 !

-->L(3)(1,2)

ans =

2.3

-->L(1)(1)
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ans =

Car

An important feature of typed-lists is that it is possible to de�ne operators acting on them
(overloading), i.e., it is possible to de�ne e.g. the multiplication L1*L2 of the two typed
lists L1 and L2. An example of use is given below, where linear systems manipulations
(concatenation, addition, multiplication,...) are done by such operations.

2.7 Linear system representation

Linear systems are treated as speci�c typed lists tlist. The basic function which is used
for de�ning linear systems is syslin. This function receives as parameters the constant
matrices which de�ne a linear system in state-space form or, in the case of system in
transfer form, its input must be a rational matrix. To be more speci�c, the calling sequence
of syslin is either Sl=syslin('dom',A,B,C,D,x0) or Sl=syslin('dom',trmat). dom is
one of the character strings 'c' or 'd' for continuous time or discrete time systems
respectively. It is useful to note that D can be a polynomial matrix (improper systems);
D and x0 are optional arguments. trmat is a rational matrix i.e. it is de�ned as a
matrix of rationals (ratios of polynomials). syslin just converts its arguments (e.g. the
four matrices A,B,C,D) into a typed list Sl. For state space representation Sl is the
tlist(['lss','A','B','C','D'],A,B,C,D,'dom'). This tlist representation allows to
access the A-matrix i.e. the second entry of Sl by the syntax Sl('A') (equivalent to
Sl(2)). Conversion from a representation to another is done by ss2tf or tf2ss. Improper
systems are also treated. syslin de�nes linear systems as speci�c tlist. (help syslin).

-->//list defining a linear system

-->A=[0 -1;1 -3];B=[0;1];C=[-1 0];

-->Sys=syslin('c',A,B,C)

Sys =

Sys(1) (state-space system:)

!lss A B C D X0 dt !

Sys(2) = A matrix =

! 0. - 1. !

! 1. - 3. !

Sys(3) = B matrix =

! 0. !

! 1. !
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Sys(4) = C matrix =

! - 1. 0. !

Sys(5) = D matrix =

0.

Sys(6) = X0 (initial state) =

! 0. !

! 0. !

Sys(7) = Time domain =

c

-->//conversion from state-space form to transfer form

-->Sys('A') //The A-matrix

ans =

! 0. - 1. !

! 1. - 3. !

-->Sys('B')

ans =

! 0. !

! 1. !

-->hs=ss2tf(Sys)

hs =

1

---------

2

1 + 3s + s

-->size(hs)

ans =

! 1. 1. !

-->hs('num')

ans =

1
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-->hs('den')

ans =

2

1 + 3s + s

-->typeof(hs)

ans =

rational

-->//inversion of transfer matrix

-->inv(hs)

ans =

2

1 + 3s + s

----------

1

-->//inversion of state-space form

-->inv(Sys)

ans =

ans(1) (state-space system:)

!lss A B C D X0 dt !

ans(2) = A matrix =

[]

ans(3) = B matrix =

[]

ans(4) = C matrix =

[]

ans(5) = D matrix =

2

1 + 3s + s
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ans(6) = X0 (initial state) =

[]

ans(7) = Time domain =

c

-->//converting this inverse to transfer representation

-->ss2tf(ans)

ans =

2

1 + 3s + s

The list representation allows manipulating linear systems as abstract data objects.
For example, the linear system can be combined with other linear systems or the transfer
function representation of the linear system can be obtained as was done above using
ss2tf. Note that the transfer function representation of the linear system is itself a tlist.
A very useful aspect of the manipulation of systems is that a system can be handled as
a data object. Linear systems can be inter-connected, their representation can easily be
changed from state-space to transfer function and vice versa.

The inter-connection of linear systems can be made as illustrated in Figure 2.1. For
each of the possible inter-connections of two systems S1 and S2 the command which
makes the inter-connection is shown on the right side of the corresponding block diagram
in Figure 2.1. Note that feedback interconnection is performed by S1/.S2.

The representation of linear systems can be in state-space form or in transfer function
form. These two representations can be interchanged by using the functions tf2ss and
ss2tf which change the representations of systems from transfer function to state-space
and from state-space to transfer function, respectively. An example of the creation, the
change in representation, and the inter-connection of linear systems is demonstrated in
the following Scilab session.

-->//system connecting

-->s=poly(0,'s');

-->S1=1/(s-1)

S1 =

1

-----

- 1 + s

-->S2=1/(s-2)
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S2*S1a - S1 - S2 - a
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-

-
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S2
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�

a

Figure 2.1: Inter-Connection of Linear Systems
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S2 =

1

-----

- 2 + s

-->S1=syslin('c',S1);

-->S2=syslin('c',S2);

-->Gls=tf2ss(S2);

-->ssprint(Gls)

.

x = | 2 |x + | 1 |u

y = | 1 |x

-->hls=Gls*S1;

-->ssprint(hls)

. | 2 1 | | 0 |

x = | 0 1 |x + | 1 |u

y = | 1 0 |x

-->ht=ss2tf(hls)

ht =

1

---------

2

2 - 3s + s

-->S2*S1

ans =

1

---------

2

2 - 3s + s

-->S1+S2

ans =

- 3 + 2s
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----------

2

2 - 3s + s

-->[S1,S2]

ans =

! 1 1 !

! ----- ----- !

! - 1 + s - 2 + s !

-->[S1;S2]

ans =

! 1 !

! ----- !

! - 1 + s !

! !

! 1 !

! ----- !

! - 2 + s !

-->S1/.S2

ans =

- 2 + s

---------

2

3 - 3s + s

-->S1./(2*S2)

ans =

- 2 + s

-----

- 2 + 2s

The above session is a bit long but illustrates some very important aspects of the
handling of linear systems. First, two linear systems are created in transfer function
form using the function called syslin. This function was used to label the systems in
this example as being continuous (as opposed to discrete). The primitive tf2ss is used
to convert one of the two transfer functions to its equivalent state-space representation
which is in list form (note that the function ssprint creates a more readable format for
the state-space linear system). The following multiplication of the two systems yields their
series inter-connection. Notice that the inter-connection of the two systems is e�ected even
though one of the systems is in state-space form and the other is in transfer function form.
The resulting inter-connection is given in state-space form. Finally, the function ss2tf is
used to convert the resulting inter-connected systems to the equivalent transfer function
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representation.

2.8 Functions (Macros)

Functions are collections of commands which are executed in a new environment thus
isolating function variables from the original environments variables. Functions can be
created and executed in a number of di�erent ways. Furthermore, functions can pass
arguments, have programming features such as conditionals and loops, and can be recur-
sively called. Functions can be arguments to other functions and can be elements in lists.
The most useful way of creating functions is by using a text editor, however, functions can
be created directly in the Scilab environment using the deff primitive.

--> deff('[x]=foo(y)','if y>0 then, x=1; else, x=-1; end')

--> foo(5)

ans =

1.

--> foo(-3)

ans =

- 1.

Usually functions are de�ned in a �le using an editor and loaded into Scilab with getf('filename').
This can be done also by clicking in the File operation button. This latter syntax loads
the function(s) in filename and compiles them. The �rst line of filename must be as
follows:

function [y1,...,yn]=macname(x1,...,xk)

where the yi's are output variables and the xi's the input variables.
For more on the use and creation of functions see Section 3.2.

2.9 Libraries

Libraries are collections of functions which can be either automatically loaded into the
Scilab environment when Scilab is called, or loaded when desired by the user. Libraries
are created by the lib command. Examples of librairies are given in the SCIDIR/macros
directory. Note that in these directory there is an ASCII �le \names" which contains the
names of each function of the library, a set of .sci �les which contains the source code
of the functions and a set of .bin �les which contains the compiled code of the functions.
The Make�le invokes scilab for compiling the functions and generating the .bin �les.
The compiled functions of a library are automatically loaded into Scilab at their �rst call.
To build a library the command genlib can be used (help genlib).
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2.10 Objects

We conclude this chapter by noting that the function typeof returns the type of the
various Scilab objects. The following objects are de�ned:

� usual for matrices with real or complex entries.

� polynomial for polynomial matrices: coeÆcients can be real or complex.

� boolean for boolean matrices.

� character for matrices of character strings.

� function for functions.

� rational for rational matrices (syslin lists)

� state-space for linear systems in state-space form (syslin lists).

� sparse for sparse constant matrices (real or complex)

� boolean sparse for sparse boolean matrices.

� list for ordinary lists.

� tlist for typed lists.

� tlist for mlists.

� state-space (or rational) for syslin lists.

� library for library de�nition.

2.11 Matrix Operations

The following table gives the syntax of the basic matrix operations available in Scilab.
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SYMBOL OPERATION

[ ] matrix de�nition, concatenation

; row separator

( ) extraction m=a(k)

( ) insertion: a(k)=m

' transpose

+ addition

- subtraction

* multiplication

\ left division

/ right division

^ exponent

.* elementwise multiplication

.\ elementwise left division

./ elementwise right division

.^ elementwise exponent

.*. kronecker product

./. kronecker right division

.\. kronecker left division

2.12 Indexing

The following sample sessions shows the 
exibility which is o�ered for extracting and
inserting entries in matrices or lists. For additional details enter help extraction or
help insertion.

2.12.1 Indexing in matrices

Indexing in matrices can be done by giving the indices of selected rows and columns or by
boolean indices or by using the $ symbol.

-->A=[1 2 3;4 5 6]

A =

! 1. 2. 3. !

! 4. 5. 6. !

-->A(1,2)

ans =

2.

-->A([1 1],2)

ans =

! 2. !

! 2. !
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-->A(:,1)

ans =

! 1. !

! 4. !

-->A(:,3:-1:1)

ans =

! 3. 2. 1. !

! 6. 5. 4. !

-->A(1)

ans =

1.

-->A(6)

ans =

6.

-->A(:)

ans =

! 1. !

! 4. !

! 2. !

! 5. !

! 3. !

! 6. !

-->A([%t %f %f %t])

ans =

! 1. !

! 5. !

-->A([%t %f],[2 3])

ans =

! 2. 3. !

-->A(1:2,$-1)

ans =

! 2. !
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! 5. !

-->A($:-1:1,2)

ans =

! 5. !

! 2. !

-->A($)

ans =

6.

-->//

-->x='test'

x =

test

-->x([1 1;1 1;1 1])

ans =

!test test !

! !

!test test !

! !

!test test !

-->//

-->B=[1/%s,(%s+1)/(%s-1)]

B =

! 1 1 + s !

! - ----- !

! s - 1 + s !

-->B(1,1)

ans =

1

-

s

-->B(1,$)

ans =
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1 + s

-----

- 1 + s

-->B(2) // the numerator

ans =

! 1 1 + s !

-->//

-->A=[1 2 3;4 5 6]

A =

! 1. 2. 3. !

! 4. 5. 6. !

-->A(1,2)=10

A =

! 1. 10. 3. !

! 4. 5. 6. !

-->A([1 1],2)=[-1;-2]

A =

! 1. - 2. 3. !

! 4. 5. 6. !

-->A(:,1)=[8;5]

A =

! 8. - 2. 3. !

! 5. 5. 6. !

-->A(1,3:-1:1)=[77 44 99]

A =

! 99. 44. 77. !

! 5. 5. 6. !

-->A(1,:)=10

A =

! 10. 10. 10. !

! 5. 5. 6. !

-->A(1)=%s
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A =

! s 10 10 !

! !

! 5 5 6 !

-->A(6)=%s+1

A =

! s 10 10 !

! !

! 5 5 1 + s !

-->A(:)=1:6

A =

! 1. 3. 5. !

! 2. 4. 6. !

-->A([%t %f],1)=33

A =

! 33. 3. 5. !

! 2. 4. 6. !

-->A(1:2,$-1)=[2;4]

A =

! 33. 2. 5. !

! 2. 4. 6. !

-->A($:-1:1,1)=[8;7]

A =

! 7. 2. 5. !

! 8. 4. 6. !

-->A($)=123

A =

! 7. 2. 5. !

! 8. 4. 123. !

-->//

-->x='test'

x =



CHAPTER 2. DATA TYPES 48

test

-->x([4 5])=['4','5']

x =

!test 4 5 !

2.12.2 Indexing in lists

The following session illustrates how to create lists and insert/extract entries in list and
tlist or mlist. Enter help insertion and help extraction for additinal examples.

-->a=33;b=11;c=0;

-->l=list();l(0)=a

l =

l(1)

33.

-->l=list();l(1)=a

l =

l(1)

33.

-->l=list(a);l(2)=b

l =

l(1)

33.

l(2)

11.

-->l=list(a);l(0)=b

l =

l(1)
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11.

l(2)

33.

-->l=list(a);l(1)=c

l =

l(1)

0.

-->l=list();l(0)=null()

l =

()

-->l=list();l(1)=null()

l =

()

-->//

-->i='i';

-->l=list(a,list(c,b),i);l(1)=null()

l =

l(1)

l(1)(1)

0.

l(1)(2)

11.

l(2)

i
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-->l=list(a,list(c,list(a,c,b),b),'h');

-->l(2)(2)(3)=null()

l =

l(1)

33.

l(2)

l(2)(1)

0.

l(2)(2)

l(2)(2)(1)

33.

l(2)(2)(2)

0.

l(2)(3)

11.

l(3)

h

-->//

-->dts=list(1,tlist(['x';'a';'b'],10,[2 3]));

-->dts(2)('a')

ans =

10.

-->dts(2)('b')(1,2)

ans =
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3.

-->[a,b]=dts(2)(['a','b'])

b =

! 2. 3. !

a =

10.

-->//

-->l=list(1,'qwerw',%s)

l =

l(1)

1.

l(2)

qwerw

l(3)

s

-->l(1)='Changed'

l =

l(1)

Changed

l(2)

qwerw

l(3)

s

-->l(0)='Added'

l =
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l(1)

Added

l(2)

Changed

l(3)

qwerw

l(4)

s

-->l(6)=['one more';'added']

l =

l(1)

Added

l(2)

Changed

l(3)

qwerw

l(4)

s

l(5)

Undefined

l(6)

!one more !

! !

!added !

-->//
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-->dts=list(1,tlist(['x';'a';'b'],10,[2 3]));

-->dts(2)('a')=33

dts =

dts(1)

1.

dts(2)

dts(2)(1)

!x !

! !

!a !

! !

!b !

dts(2)(2)

33.

dts(2)(3)

! 2. 3. !

-->dts(2)('b')(1,2)=-100

dts =

dts(1)

1.

dts(2)

dts(2)(1)

!x !

! !

!a !

! !

!b !
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dts(2)(2)

33.

dts(2)(3)

! 2. - 100. !

-->//

-->l=list(1,'qwerw',%s);

-->l(1)

ans =

1.

-->[a,b]=l([3 2])

b =

qwerw

a =

s

-->l($)

ans =

s

-->//

-->L=list(33,list(l,33))

L =

L(1)

33.

L(2)

L(2)(1)

L(2)(1)(1)
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1.

L(2)(1)(2)

qwerw

L(2)(1)(3)

s

L(2)(2)

33.



Chapter 3

Programming

One of the most useful features of Scilab is its ability to create and use functions. This
allows the development of specialized programs which can be integrated into the Scilab
package in a simple and modular way through, for example, the use of libraries. In this
chapter we treat the following subjects:

� Programming Tools

� De�ning and Using Functions

� De�nition of Operators for New Data Types

� Debbuging

Creation of libraries is discussed in a later chapter.

3.1 Programming Tools

Scilab supports a full list of programming tools including loops, conditionals, case selection,
and creation of new environments. Most programming tasks should be accomplished in
the environment of a function. Here we explain what programming tools are available.

3.1.1 Comparison Operators

There exist �ve methods for making comparisons between the values of data objects in
Scilab. These comparisons are listed in the following table.

== or = equal to

< smaller than

> greater than

<= smaller or equal to

>= greater or equal to

<> or ~= not equal to

These comparison operators are used for evaluation of conditionals.

56



CHAPTER 3. PROGRAMMING 57

3.1.2 Loops

Two types of loops exist in Scilab: the for loop and the while loop. The for loop steps
through a vector of indices performing each time the commands delimited by end.

--> x=1;for k=1:4,x=x*k,end

x =

1.

x =

2.

x =

6.

x =

24.

The for loop can iterate on any vector or matrix taking for values the elements of the
vector or the columns of the matrix.

--> x=1;for k=[-1 3 0],x=x+k,end

x =

0.

x =

3.

x =

3.

The for loop can also iterate on lists. The syntax is the same as for matrices. The index
takes as values the entries of the list.

-->l=list(1,[1,2;3,4],'str')

-->for k=l, disp(k),end

1.

! 1. 2. !

! 3. 4. !

str

The while loop repeatedly performs a sequence of commands until a condition is
satis�ed.
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--> x=1; while x<14,x=2*x,end

x =

2.

x =

4.

x =

8.

x =

16.

A for or while loop can be ended by the command break :

-->a=0;for i=1:5:100,a=a+1;if i > 10 then break,end; end

-->a

a =

3.

In nested loops, break exits from the innermost loop.

-->for k=1:3; for j=1:4; if k+j>4 then break;else disp(k);end;end;end

1.

1.

1.

2.

2.

3.

3.1.3 Conditionals

Two types of conditionals exist in Scilab: the if-then-else conditional and the select-
case conditional. The if-then-else conditional evaluates an expression and if true exe-
cutes the instructions between the then statement and the else statement (or end state-
ment). If false the statements between the else and the end statement are executed.
The else is not required. The elseif has the usual meaning and is a also a keyword
recognized by the interpreter.
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--> x=1

x =

1.

--> if x>0 then,y=-x,else,y=x,end

y =

- 1.

--> x=-1

x =

- 1.

--> if x>0 then,y=-x,else,y=x,end

y =

- 1.

The select-case conditional compares an expression to several possible expressions
and performs the instructions following the �rst case which equals the initial expression.

--> x=-1

x =

- 1.

--> select x,case 1,y=x+5,case -1,y=sqrt(x),end

y =

i

It is possible to include an else statement for the condition where none of the cases are
satis�ed.

3.2 De�ning and Using Functions

It is possible to de�ne a function directly in the Scilab environment, however, the most
convenient way is to create a �le containing the function with a text editor. In this section
we describe the structure of a function and several Scilab commands which are used almost
exclusively in a function environment.

3.2.1 Function Structure

Function structure must obey the following format

function [y1,...,yn]=foo(x1,...,xm)
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.

.

.

where foo is the function name, the xi are the m input arguments of the function, the yj
are the n output arguments from the function, and the three vertical dots represent the
list of instructions performed by the function. An example of a function which calculates
k! is as follows

function [x]=fact(k)

k=int(k);

if k<1 then,

k=1;

end,

x=1;

for j=1:k,

x=x*j;

end,

If this function is contained in a �le called fact.sci the function must be \loaded" into
Scilab by the getf command and before it can be used:

--> exists('fact')

ans =

0.

--> getf('../macros/fact.sci')

--> exists('fact')

ans =

1.

--> x=fact(5)

x =

120.

In the above Scilab session, the command exists indicates that fact is not in the envi-
ronment (by the 0 answer to exist). The function is loaded into the environment using
getf and now exists indicates that the function is there (the 1 answer). The example
calculates 5!.

3.2.2 Loading Functions

Functions are usually de�ned in �les. A �le which contains a function must obey the
following format

function [y1,...,yn]=foo(x1,...,xm)

.
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.

.

where foo is the function name. The xi's are the input parameters and the the yj's are the
output parameters, and the three vertical dots represent the set of instructions performed
by the function to evaluate the yj's, given the xi's. Inputs and ouputs parameters can be
any Scilab object (including functions themeselves).

Functions are Scilab objects and should not be considered as �les. To be used in
Scilab, functions de�ned in �les must be loaded by the command getf(filename). If
the �le filename contains the function foo, the function foo can be executed only if it
has been previously loaded by the command getf(filename). A �le may contain several

functions. Functions can also be de�ned \on line" by the command deff. This is useful
if one wants to de�ne a function as the output parameter of a other function.

Collections of functions can be organized as libraries (see lib command). Stan-
dard Scilab librairies (linear algebra, control,...) are de�ned in the subdirectories of
SCIDIR/macros/.

3.2.3 Global and Local Variables

If a variable in a function is not de�ned (and is not among the input parameters) then
it takes the value of a variable having the same name in the calling environment. This
variable however remains local in the sense that modifying it within the function does not
alter the variable in the calling environment unless resume is used (see below). Functions
can be invoked with less input or output parameters. Here is an example:

function [y1,y2]=f(x1,x2)

y1=x1+x2

y2=x1-x2

-->[y1,y2]=f(1,1)

y2 =

0.

y1 =

2.

-->f(1,1)

ans =

2.

-->f(1)

y1=x1+x2;

!--error 4

undefined variable : x2

at line 2 of function f

-->x2=1;

-->[y1,y2]=f(1)

y2 =
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0.

y1 =

2.

-->f(1)

ans =

2.

Note that it is not possible to call a function if one of the parameter of the calling
sequence is not de�ned:

function [y]=f(x1,x2)

if x1<0 then y=x1, else y=x2;end

-->f(-1)

ans =

- 1.

-->f(-1,x2)

!--error 4

undefined variable : x2

-->f(1)

undefined variable : x2

at line 2 of function f called by :

f(1)

-->x2=3;f(1)

-->f(1)

ans =

3

Global variable are de�ned by the global command. They can be read and modi�ed
inside functions. Enter help global for details.

3.2.4 Special Function Commands

Scilab has several special commands which are used almost exclusively in functions. These
are the commands

� argn: returns the number of input and output arguments for the function
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� error: used to suspend the operation of a function, to print an error message, and
to return to the previous level of environment when an error is detected.

� warning,

� pause: temporarily suspends the operation of a function.

� break: forces the end of a loop

� return or resume : used to return to the calling environment and to pass local
variables from the function environment to the calling environment.

The following example runs the following foo function which illustrates these com-
mands.

function [z]=foo(x,y)

[out,in]=argn(0);

if x=0 then,

error('division by zero');

end,

slope=y/x;

pause,

z=sqrt(slope);

s=resume(slope);

--> z=foo(0,1)

error('division by zero');

!--error 10000

division by zero

at line 4 of function foo called by :

z=foo(0,1)

--> z=foo(2,1)

-1-> resume

z =

0.7071068

--> s

s =

0.5

In the example, the �rst call to foo passes an argument which cannot be used in the
calculation of the function. The function discontinues operation and indicates the nature
of the error to the user. The second call to the function suspends operation after the
calculation of slope. Here the user can examine values calculated inside of the function,
perform plots, and, in fact perform any operations allowed in Scilab. The -1-> prompt
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indicates that the current environment created by the pause command is the environment
of the function and not that of the calling environment. Control is returned to the function
by the command return. Operation of the function can be stopped by the command quit

or abort. Finally the function terminates its calculation returning the value of z. Also
available in the environment is the variable s which is a local variable from the function
which is passed to the global environment.

3.3 De�nition of Operations on New Data Types

It is possible to transparently de�ne fundamental operations for new data types in Scilab
(enter help overloading for a full description of this feature). That is, the user can give
a sense to multiplication, division, addition, etc. on any two data types which exist in
Scilab. As an example, two linear systems (represented by lists) can be added together to
represent their parallel inter-connection or can be multiplied together to represent their
series inter-connection. Scilab performs these user de�ned operations by searching for
functions (written by the user) which follow a special naming convention described below.

The naming convention Scilab uses to recognize operators de�ned by the user is deter-
mined by the following conventions. The name of the user de�ned function is composed
of four (or possibly three) �elds. The �rst �eld is always the symbol %. The third �eld is
one of the characters in the following table which represents the type of operation to be
performed between the two data types.

Third �eld

SYMBOL OPERATION

a +

b ; (row separator)

c [ ] (matrix de�nition)

d ./

e () extraction: m=a(k)

i () insertion: a(k)=m

k .*.

l \ left division

m *

p ^ exponent

q .\

r / right division

s -

t ' (transpose)

u *.

v /.

w \.

x .*

y ./.

z .\.

The second and fourth �elds represent the type of the �rst and second data objects,
respectively, to be treated by the function and are represented by the symbols given in
the following table.
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Second and Fourth �elds

SYMBOL VARIABLE TYPE

s scalar

p polynomial

l list (untyped)

c character string

m function

xxx list (typed)

A typed list is one in which the �rst entry of the list is a character string where the �rst
characters of the string are represented by the xxx in the above table. For example a typed
list representing a linear system has the form tlist(['lss','A','B','C','D','X0','dt'],a,b,c,d,x0,'c'

and, thus, the xxx above is lss.
An example of the function name which multiplies two linear systems together (to

represent their series inter-connection) is %lss m lss. Here the �rst �eld is %, the second
�eld is lss (linear state-space), the third �eld is m \multiply" and the fourth one is lss.
A possible user function which performs this multiplication is as follows

function [s]=%lss_m_lss(s1,s2)

[A1,B1,C1,D1,x1,dom1]=s1(2:7),

[A2,B2,C2,D2,x2]=s2(2:6),

B1C2=B1*C2,

s=lsslist([A1,B1C2;0*B1C2' ,A2],...

[B1*D2;B2],[C1,D1*C2],D1*D2,[x1;x2],dom1),

An example of the use of this function after having loaded it into Scilab (using for example
getf or inserting it in a library) is illustrated in the following Scilab session

-->A1=[1 2;3 4];B1=[1;1];C1=[0 1;1 0];

-->A2=[1 -1;0 1];B2=[1 0;2 1];C2=[1 1];D2=[1,1];

-->s1=syslin('c',A1,B1,C1);

-->s2=syslin('c',A2,B2,C2,D2);

-->ssprint(s1)

. | 1 2 | | 1 |

x = | 3 4 |x + | 1 |u

| 0 1 |

y = | 1 0 |x

-->ssprint(s2)

. | 1 -1 | | 1 0 |

x = | 0 1 |x + | 2 1 |u
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y = | 1 1 |x + | 1 1 |u

-->s12=s1*s2; //This is equivalent to s12=%lss_m_lss(s1,s2)

-->ssprint(s12)

| 1 2 1 1 | | 1 1 |

. | 3 4 1 1 | | 1 1 |

x = | 0 0 1 -1 |x + | 1 0 |u

| 0 0 0 1 | | 2 1 |

| 0 1 0 0 |

y = | 1 0 0 0 |x

Notice that the use of %lss m lss is totally transparent in that the multiplication of the
two lists s1 and s2 is performed using the usual multiplication operator *.

The directory SCIDIR/macros/percent contains all the functions (a very large num-
ber...) which perform operations on linear systems and transfer matrices. Conversions are
automatically performed. For example the code for the function %lss m lss is there (note
that it is much more complicated that the code given here!).

3.4 Debbuging

The simplest way to debug a Scilab function is to introduce a pause command in the
function. When executed the function stops at this point and prompts -1-> which indi-
cates a di�erent \level"; another pause gives -2-> ... At the level 1 the Scilab commands
are analog to a di�erent session but the user can display all the current variables present
in Scilab, which are inside or outside the function i.e. local in the function or belonging
to the calling environment. The execution of the function is resumed by the command
return or resume (the variables used at the upper level are cleaned). The execution of
the function can be interrupted by abort.

It is also possible to insert breakpoints in functions. See the commands setbpt,
delbpt, disbpt. Finally, note that it is also possible to trap errors during the execu-
tion of a function: see the commands errclear and errcatch. Finally the experts in
Scilab can use the function debug(i) where i=0,..,4 denotes a debugging level.
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Basic Primitives

This chapter brie
y describes some basic primitives of Scilab. More detailed information
is given in the manual (see the directory SCIDIR/man/LaTex-doc).

4.1 The Environment and Input/Output

In this chapter we describe the most important aspects of the environment of Scilab: how
to automatically perform certain operations when entering Scilab, and how to read and
write data from and to the Scilab environment.

4.1.1 The Environment

Scilab is loaded with a number of variables and primitives. The command who lists the
variables which are available.

The who command also indicates how many elements and variables are available for
use. The user can obtain on-line help on any of the functions listed by typing help

<function-name>.
Variables can be saved in an external binary �le using save. Similarly, variables

previously saved can be reloaded into Scilab using load.
Note that after the command clear x y the variables x and y no longer exist in the

environment. The command save without any variable arguments saves the entire Scilab
environment. Similarly, the command clear used without any arguments clears all of the
variables, functions, and libraries in the environment.

Functions which exist in �les can be seen by using disp and loaded by using getf.
Libraries of functions are loaded using lib.
The list of functions available in the library can be obtained by using disp.

4.1.2 Startup Commands by the User

When Scilab is called the user can automatically load into the environment functions, li-
braries, variables, and perform commands using the the �le .scilab in his home directory.
This is particularly useful when the user wants to run Scilab programs in the background
(such as in batch mode). Another useful aspect of the .scilab �le is when some functions
or libraries are often used. In this case the command getf can be used in the .scilab

�le to automatically load the desired functions and libraries whenever Scilab is invoked.

67
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4.1.3 Input and Output

Although the commands save and load are convenient, one has much more control over
the transfer of data between �les and Scilab by using the commands read and write.
These two commands work similarly to the read and write commands found in Fortran.
The syntax of these two commands is as follows.

--> x=[1 2 %pi;%e 3 4]

x =

! 1. 2. 3.1415927 !

! 2.7182818 3. 4. !

--> write('x.dat',x)

--> clear x

--> xnew=read('x.dat',2,3)

xnew =

! 1. 2. 3.1415927 !

! 2.7182818 3. 4. !

Notice that read speci�es the number of rows and columns of the matrix x. Complicated
formats can be speci�ed.

4.2 Help

On-line help is available either by clicking on the help button or by entering help item

(where item is usually the name of a function or primitive). apropos keyword looks for
keyword in a whatis �le. This facility is equivalent to the Unix whatis command. To
add a new item or keyword is easy. Just create a .cat ASCII �le describing the item and
a whatis �le in your directory. Then add your directory path (and a title) in the variable
%helps (see also the README �le there). You can use the standard format of the scilab
manual (see the SCIDIR/man/subdirectories and SCIDIR/examples/man-examples).
The Scilab LATEX manual is automatically obtained from the manual items by a Makefile.
See the directory SCIDIR/man/Latex-doc. Note that the command manedit opens an help
�le with an editor (default editor is emacs).

4.3 Useful functions

We give here a short list of useful functions and keywords that can be used as entry points
in the Scilab manual. All the functions available can be obtained by entering help. For
each manual entry the SEE ALSO line refers to related functions.

� Elementary functions: sum, prod, sqrt, diag, cos, max, round, sign, fft

� Sorting: sort, gsort, find
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� Speci�c Matrices: zeros, eye, ones, matrix, empty

� Linear Algebra: det, inv, qr, svd, bdiag, spec, schur

� Polynomials: poly, roots, coeff, horner, clean, freq

� Buttons, dialog: x_choose, x_dialog, x_mdialog, getvalue, addmenu

� Linear systems: syslin

� Random numbers: rand

� Programming: function, deff, argn, for, if, end, while, select, warning,

error, break, return

� Comparison symbols: ==, >=, >, =, & (and),| (or)

� Execution of a �le: exec

� Debugging: pause, return, abort

� Spline functions, interpolation: splin, interp, interpln

� Character strings: string, part, evstr, execstr

� Graphics: plot, xset, driver, plot2d, xgrid, locate, plot3d, Graphics

� Ode solvers: ode, dassl, dassrt, odedc

� Optimization: optim, quapro, linpro, lmitool

� Interconnected dynamic systems: scicos

� Adding a C or Fortran routine: link, fort, addinter, intersci

4.4 Nonlinear Calculation

Scilab has several powerful non-linear primitives for simulation or optimization.

4.4.1 Nonlinear Primitives

Scilab provides several facilities for nonlinear calculations.
Numerical simulation of systems of di�erential equations is made by the ode primitive.

Many solvers are available, mostly from odepack, for solving sti� or non-sti� systems.
Implicit systems can be solved by dassl. It is also possible to solve systems with stopping
time: integration is performed until the state is crossing a given surface. See ode and
dassrt commands. There is a number of optional arguments available for solving ode's
(tolerance parameters, jacobian, order of approximation, time steps etc). For �ode solvers,
these parameters are set by the global variable %ODEOPTIONS.

Minimizing non linear functions is done the optim function. Several algorithms (in-
cluding non di�erentiable optimization) are available. Codes are from INRIA's modulopt
library. Enter help optim for more a more detailed description.
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4.4.2 Argument functions

Speci�c Scilab functions or C or Fortran routines can be used as an argument of some
high-level primitives (such as ode, optim, dassl...). These fonctions are called argument
functions or externals. The calling sequence of this function or routine is imposed by the
high-level primitive which sets the argument of this function or routine.

For example the function costfunc is an argument of the optim primitive. Its calling
sequence must be: [f,g,ind]=costfunc(x,ind) as imposed by the optim primitive. The
following non-linear primitives in Scilab need argument functions or subroutines: ode,
optim, impl, dassl, intg, odedc, fsolve. For problems where computation time is im-
portant, it is recommended to use C or Fortran subroutines. Examples of such subroutines
are given in the directory SCIDIR/routines/default. See the README �le there for
more details.

When such a subroutine is written it must be linked to Scilab. This link oper-
ation can be done dynamically by the link command. It is also possible to intro-
duce the code in a more permanent manner by inserting it in a speci�c interface in
SCIDIR/routines/default and rebuild a new Scilab by a make all command in the
Scilab directory.

4.5 XWindow Dialog

It may be convenient to open a speci�c XWindow window for entering interactively pa-
rameters inside a function or for a demo. This facility is possible thanks to e.g. the
functions x_dialog, x_choose, x_mdialog, x_matrix and x_message. The demos which
can be executed by clicking on the demo button provide simple examples of the use of
these functions.

4.6 Tk-Tcl Dialog

An interface between Scilab and Tk-Tcl exists. A Graphic User Interface object can be
created by the function uicontrol. Basic primitives are TK_EvalFile, TK_EvalStr and
TK_GetVar, TK_Setvar. Examples are given by invoking the help of these functions.
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Graphics

This section introduces graphics in Scilab.

5.1 The Graphics Window

It is possible to use several graphics windows ScilabGraphicx x being the number used
for the management of the windows, but at any time only one window is active. On the
main Scilab window the button Graphic Window x is used to manage the windows : x
denotes the number of the active window, and we can set (create), raise or delete the
window numbered x : in particular we can directly create the graphics window numbered
10. The execution of a plotting command automatically creates a window if necessary.

We will see later that Scilab uses a graphics environment de�ning some parameters
of the plot, these parameters have default values and can be changed by the user; every
graphics window has its speci�c context so the same plotting command van give di�erent
results on di�erent windows.

There are 4 buttons on the graphics window:

� 3D Rot.: for applying a rotation with the mouse to a 3D plot. This button is
inhibited for a 2D plot. For the help of manipulations (rotation with speci�c angles
...) the rotation angles are given at the top of the window.

� 2D Zoom: zooming on a 2D plot. This command can be recursively invoked. For a
3D plot this button is not inhibited but it has no e�ect.

� UnZoom: return to the initial plot (not to the plot corresponding to the previous
zoom in case of multiple zooms).

These 3 buttons a�ecting the plot in the window are not always in use; we will see
later that there are di�erent choices for the underlying device and zoom and rotation
need the record of the plotting commands which is one of the possible choices (this
is the default).

� File: this button opens di�erent commands and menus.

The �rst one is simple : Clear simply rubs out the window (without a�ecting the
graphics context of the window).

The command Print... opens a selection panel for printing. The printers are
de�ned in the main scilab script SCIDIR/bin/scilab (obtained by \make all" from
the origin �le SCIDIR/bin/scilab.g).

71
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The Export command opens a panel selection for getting a copy of the plot on a �le
with a speci�ed format (Postscript, Postscript-Latex, X�g).

The save command directly saves the plot on a �le with a speci�ed name. This �le
can be loaded later in Scilab for replotting.

The Close is the same command than the previous Delete Graphic Window of the
menu of the main window, but simply applied to its window (the graphic context is,
of course deleted).

5.2 The Media

There are di�erent graphics devices in Scilab which can be used to send graphics to
windows or paper. The default for the output is ScilabGraphic0 window .
The di�erent drivers are:

� X11 : graphics driver for the X11 window system

� Rec : an X Window driver (X11) which also records all the graphic commands. This
is the default (required for the zoom and rotate).

� Wdp : an X11 driver without recorded graphics; the graphics are done on a pixmap
and are send to the graphic window with the command xset("wshow"). The pixmap
is cleared with the command xset("wwpc") or with the usual command xbasc()

� Pos : graphics driver for Postscript printers

� Fig : graphics driver for the X�g system

In the 3 �rst cases the 'implicit' device is a graphics window (existing or created by
the plot). For the 2 last cases we will see later how to a�ect a speci�c device to the plot :
a �le where the plot will be recorded in the Postscript or X�g format.

The basic Scilab graphics commands are :

� driver: selects a graphic driver

The next 3 commands are speci�c of the X-drivers :

� xclear: clears one or more graphic windows; does not a�ect the graphics context of
these windows.

� xbasc: clears a graphic window and erase the recorded graphics; does not a�ect the
graphics context of the window.

� xpause: a pause in milliseconds

� xselect: raises the current graphic window (for X-drivers)

� xclick: waits for a mouse click

� xbasr: redraws the plot of a graphic window

� xdel: deletes a graphic window (equivalent to the Close button

The following commands are speci�c of the Postscript and X�g drivers :
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� xinit: initializes a graphic device simply opens a graphics window for the X-drivers
this command is necessary for Postscript and X�g drivers.

� xend: closes a graphic session (and the associated device).

In fact, the regular driver for a common use is Rec and there are special commands in
order to avoid a change of driver; in many cases, one can ignore the existence of drivers
and use the functions xbasimp, xs2fig in order to send a graphic to a printer or in a �le
for the Xfig system. For example with :

-->driver('Pos')

-->xinit('foo.ps')

-->plot(1:10)

-->xend()

-->driver('Rec')

-->plot(1:10)

-->xbasimp(0,'foo1.ps')

we get two identical Postscript �les : 'foo.ps' and 'foo1.ps.0' (the appending 0 is the
number of the active window where the plot has been done).

The default for plotting is the superposition; this means that between 2 di�erent plots
one of the 2 following command is needed : xbasc(window-number) which clears the
window and erase the recorded Scilab graphics command associated with the window
window-number or xclear) which simply clears the window.

If you enlarge a graphic window, the command xbasr(window-number) is executed by
Scilab. This command clears the graphic window window-number and replays the graphic
commands associated with it. One can call this function manually, in order to verify the
associated recorded graphics commands.

Any number of graphics windows can be created with buttons or with the commands
xset or xselect. The environment variable DISPLAY can be used to specify an X11
Display or one can use the xinit function in order to open a graphic window on a speci�c
display.

5.3 Global Parameters of a Plot

Graphics Context

Some parameters of the graphics are controlled by a graphic context ( for example the line
thickness) and others are controlled through graphics arguments of a plotting command.
The graphics context has a default de�nition and can be change by the command xset

: the command without argument i.e. xset() opens the Scilab Toggles Panel and
the user can changes the parameters by simple mouse clickings. We give here di�erent
parameters controlled by this command :



CHAPTER 5. GRAPHICS 74

� xset : set graphic context values.

(i)-xset("font",fontid,fontsize) : �x the current font and its current size.

(ii)-xset("mark",markid,marksize) : set the current mark and current mark size.

(iii)-xset("use color",flag) : change to color or gray plot according to the values
(1 or 0) of flag.

(iv)-xset("colormap",cmap) : set the colormap as a m x 3 matrix. m is the number
of colors. Color number i is given as a 3-uple cmap[i,1],cmap[i,2], cmap[i,3] corre-
sponding respectively to Red, Green and Blue intensity between 0 and 1. Calling
again xset() shows the colormap with the indices of the colors.

(v)-xset("window",window-number) : sets the current window to the window window-number

and creates the window if it doesn't exist.

(vi)-xset("wpos",x,y) : �xes the position of the upper left point of the graphic
window.

Many other choices are done by xset :

-use of a pixmap : the plot can be directly displayed on the screen or executed on a
pixmap and then expose by the command xset("wshow"); this is the usual way for
animation e�ect.

-logical function for drawing : this parameter can be changed for speci�c e�ects
(superposition or adding or substracting of colors). Looking at the successive plots of
the following simple commands give an example of 2 possible e�ects of this parameter
:

xset('default');

plot3d();

plot3d();

xset('alufunction',7);

xset('window',0);

plot3d();

xset('default');

plot3d();

xset('alufunction',6);

xset('window',0);

plot3d();

We have seen that some choices exist for the fonts and this choice can be extended
by the command:

� xlfont : to load a new family of fonts from the XWindow Manager

There exists the function \reciprocal" to xset :

� xget : to get informations about the current graphic context.

All the values of the parameters �xed by xset can be obtained by xget. An example
:
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-->pos=xget("wpos")

pos =

! 105. 121. !

pos is the position of the upper left point of the graphic window.

Some Manipulations

Coordinates transforms:

� isoview : isometric scale without window change

allows an isometric scale in the window of previous plots without changing the win-
dow size:

t=(0:0.1:2*%pi)';

plot2d(sin(t),cos(t));

xbasc()

isoview(-1,1,-1,1);

plot2d(sin(t),cos(t),-1,'001');

� square : isometric scale with resizing the window

the window is resized according to the parameters of the command.

� scaling : scaling on data

� rotate : rotation

scaling and rotate executes respectively an aÆne transform and a geometric ro-
tation of a 2-lines-matrix corresponding to the (x,y) values of a set of points.

� xgetech, xsetech : change of scale inside the graphic window

The current graphic scale can be �xed by a high level plot command. You may want
to get this parameter or to �x it directly : this is the role of xgetech, xsetech .
xsetech is a simple way to cut the window in di�erents parts for di�erent plots :

t=(0:0.1:2*%pi)';

xsetech([0.,0.,0.6,0.3],[-1,1,-1,1]);

plot2d(sin(t),cos(t));

xsetech([0.5,0.3,0.4,0.6],[-1,1,-1,1]);

plot2d(sin(t),cos(t));
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5.4 2D Plotting

5.4.1 Basic 2D Plotting

The simplest 2D plot is plot(x,y) or plot(y): this is the plot of y as function of x where
x and y are 2 vectors; if x is missing, it is replaced by the vector (1,...,size(y)). If y
is a matrix, its rows are plotted. There are optional arguments.

A �rst example is given by the following commands and one of the results is represented
on �gure 5.1:

t=(0:0.05:1)';

ct=cos(2*%pi*t);

// plot the cosine

plot(t,ct);

// xset() opens the toggle panel and

// some parameters can be changed with mouse clicks

// given by commands for the demo here

xset("font",5,4);xset("thickness",3);

// plot with captions for the axis and a title for the plot

// if a caption is empty the argument ' ' is needed

plot(t,ct,'Time','Cosine','Simple Plot');

// click on a color of the xset toggle panel and do the previous plot again

// to get the title in the chosen color
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Figure 5.1: First example of plotting

The generic 2D multiple plot is
plot2di(str,x,y,[style,strf,leg,rect,nax])

� index of plot2d : i=missing,1,2,3,4.
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For the di�erent values of i we have:

i=missing : piecewise linear plotting

i=1 : as previous with possible logarithmic scales

i=2 : piecewise constant drawing style

i=3 : vertical bars

i=4 : arrows style (e.g. ode in a phase space)

t=(1:0.1:8)';xset("font",2,3);

xsetech([0.,0.,0.5,0.5],[-1,1,-1,1]);

plot2d([t t],[1.5+0.2*sin(t) 2+cos(t)]);

xtitle('Plot2d');

titlepage('Piecewise linear');

//

xsetech([0.5,0.,0.5,0.5],[-1,1,-1,1]);

plot2d1('oll',t,[1.5+0.2*sin(t) 2+cos(t)]);

xtitle('Plot2d1');

titlepage('Logarithmic scale(s)');

//

xsetech([0.,0.5,0.5,0.5],[-1,1,-1,1]);

plot2d2('onn',t,[1.5+0.2*sin(t) 2+cos(t)]);

xtitle('Plot2d2');

titlepage('Piecewise constant');

//

xsetech([0.5,0.5,0.5,0.5],[-1,1,-1,1]);

plot2d3('onn',t,[1.5+0.2*sin(t) 2+cos(t)]);

xtitle('Plot2d3')

titlepage('Vertical bar plot')

xset('default')

� Parameter str : it is the string "abc" :

str is empty if i is missing.

a=e : means empty; the values of x are not used; (The user must give a dummy
value to x).

a=o : means one; the x-values are the same for all the curves

a=g : means general.

b=l : a logarithmic scale is used on the X-axis

c=l : a logarithmic scale is used on the Y-axis

-Parameters x,y : two matrices of the same size [nl,nc] (nc is the number of curves
and nl is the number of points of each curve).

For a single curve the vector can be row or column : plot2d(t',cos(t)') plot2d(t,cos(t))

are equivalent.

� Parameter style :it is a real vector of size (1,nc); the style to use for curve j is
de�ned by size(j) (when only one curve is drawn style can specify the style and
a position to use for the caption).
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Figure 5.2: Di�erent 2D plotting

x=0:0.1:2*%pi;

u=[-0.8+sin(x);-0.6+sin(x);-0.4+sin(x);-0.2+sin(x);sin(x)];

u=[u;0.2+sin(x);0.4+sin(x);0.6+sin(x);0.8+sin(x)]';

//start trying the color with the 2 following lines

//sty=[-9,-8,-7,-6,-5,-4,-3,-2,-1,0];

//plot2d1('onn',x',u,sty,"111"," ",[0,-2,2*%pi,3],[2,10,2,10]);

plot2d1('onn',x',u,...

[9,8,7,6,5,4,3,2,1,0],"011"," ",[0,-2,2*%pi,3],[2,10,2,10]);

x=0:0.2:2*%pi;

v=[1.4+sin(x);1.8+sin(x)]';

xset("mark",1,5);

plot2d1('onn',x',v,[7,8],"011"," ",[0,-2,2*%pi,3],[2,10,2,10]);

xset('default');

� Parameter strf : it is a string of length 3 "xyz" corresponding to :

x=1 : captions displayed

y=1 : the argument rect is used to specify the boundaries of the plot.
rect=[xmin,ymin,xmax,ymax]

y=2 : the boundaries of the plot are computed

y=0 : the current boundaries

z=1 : an axis is drawn and the number of tics can be speci�ed by the nax argument

z=2 : the plot is only surrounded by a box

� Parameter leg : it is the string of the captions for the di�erent plotted curves . This
string is composed of �elds separated by the @ symbol: for example ``module@phase''
(see example below). These strings are displayed under the plot with small segments
recalling the styles of the corresponding curves.
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Figure 5.3: Black and white plotting styles

� Parameter rect : it is a vector of 4 values specifying the boundaries of the plot
rect=[xmin,ymin,xmax,ymax].

� Parameter nax : it is a vector [nx,Nx,ny,Ny] where nx (ny) is the number of subgrads
on the x (y) axis and Nx (Ny) is the number of graduations on the x (y) axis.

//captions for identifying the curves

//controlling the boundaries of the plot and the tics on axes

x=-%pi:0.3:%pi;

y1=sin(x);y2=cos(x);y3=x;

X=[x;x;x]; Y=[y1;y2;y3];

plot2d1("gnn",X',Y',[1 2 3]',"111","caption1@caption2@caption3",...

[-3,-3,3,2],[2,20,5,5]);

For di�erent plots the simple commands without any argument show a demo (e.g
plot2d3() ).

5.4.2 Captions and Presentation

� xgrid : adds a grid on a 2D graphic; the calling parameter is the number of the
color.

� xtitle : adds title above the plot and axis names on a 2D graphic

� titlepage : graphic title page in the middle of the plot

//Presentation
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Figure 5.4: Box, captions and tics

x=-%pi:0.3:%pi;

y1=sin(x);y2=cos(x);y3=x;

X=[x;x;x]; Y=[y1;y2;y3];

plot2d1("gnn",X',Y',[1 2 3]',"111","caption1@caption2@caption3",...

[-3,-3,3,2],[2,20,2,5]);

xtitle(["General Title";"(with xtitle command)"],"x-axis title","y-axis title (with xt

xgrid();

xclea(-2.7,1.5,1.5,1.5);

titlepage("Titlepage");

xstring(0.6,.45,"(with titlepage command)");

xstring(0.05,.7,["xstring command after";"xclea command"],0,1);

� plotframe : graphic frame with scaling and grid

We have seen that it is possible to control the tics on the axes, choose the size of the
rectangle for the plotand add a grid. This operation can be prepared once and then used
for a sequence of di�erent plots. One of the most useful aspect is to get graduations by
choosing the number of graduations and getting rounded numbers.

rect=[-%pi,-1,%pi,1];

tics=[2,10,4,10];

plotframe(rect,tics,[%t,%t],...

['Plot with grids and automatic bounds','angle','velocity']);

� graduate : a simple tool for computing pretty axis graduations before a plot.
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Figure 5.5: Grid, Title eraser and comments

5.4.3 Specialized 2D Plottings

� champ : vector �eld in R2

//try champ

x=[-1:0.1:1];y=x;u=ones(x);

fx=x.*.u';fy=u.*.y';

champ(x,y,fx,fy);

xset("font",2,3);

xtitle(['Vector field plot';'(with champ command)']);

//with the color (and a large stacksize)

x=[-1:0.004:1];y=x;u=ones(x);

fx=x.*.u';fy=u.*.y';

champ1(x,y,fx,fy);

� fchamp : for a vector �eld in R2 de�ned by a function. The same plot than champ

for a vector �eld de�ned for example by a scilab program.

� fplot2d : 2D plotting of a curve described by a function. This function plays the
same role for plot2d than the previous for champ.

� grayplot : 2D plot of a surface using gray levels; the surface being de�ned by the
matrix of the values for a grid.

� fgrayplot : the same than the previous for a surface de�ned by a function (scilab
program).

In fact these 2 functions can be replaced by a usual color plot with an appropriate
colormap where the 3 RGB components are the same.
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Figure 5.6: Vector �eld in the plane

R=[1:256]/256;RGB=[R' R' R'];

xset('colormap',RGB);

deff('[z]=surf(x,y)','z=-((abs(x)-1)**2+(abs(y)-1)**2)');

fgrayplot(-1.8:0.02:1.8,-1.8:0.02:1.8,surf,"111",[-2,-2,2,2]);

xset('font',2,3);

xtitle(["Grayplot";"(with fgrayplot command)"]);

//the same plot can be done with a ``unique'' given color

R=[1:256]/256;

G=0.1*ones(R);

RGB=[R' G' G'];

xset('colormap',RGB);

fgrayplot(-1.8:0.02:1.8,-1.8:0.02:1.8,surf,"111",[-2,-2,2,2]);

� errbar : creates a plot with error bars

5.4.4 Plotting Some Geometric Figures

Polylines Plotting

� xsegs : draws a set of unconnected segments

� xrect : draws a single rectangle

� xfrect : �lls a single rectangle

� xrects : �lls or draws a set of rectangles

� xpoly : draws a polyline

� xpolys : draws a set of polylines
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Figure 5.7: Gray plot with a gray colormap

� xfpoly : �lls a polygon

� xfpolys : �lls a set of polygons

� xarrows : draws a set of unconnected arrows

� xfrect : �lls a single rectangle

� xclea : erases a rectangle on a graphic window

Curves Plotting

� xarc : draws an ellipsis

� xfarc : �lls an ellipsis

� xarcs : �lls or draws a set of ellipsis

5.4.5 Writting by Plotting

� xstring : draws a string or a matrix of strings

� xstringl : computes a rectangle which surrounds a string

� xstringb : draws a string in a speci�ed box

� xnumb : draws a set of numbers

We give now the sequence of the commands for obtaining the �gure 5.8.

// initialize default environment variables

xset('default');



CHAPTER 5. GRAPHICS 84

xset("use color",0);

plot([1:10]);

xbasc()

xrect(0,1,3,1)

xfrect(3.1,1,3,1)

xstring(0.5,0.5,"xrect(0,1,3,1)")

xstring(4.,0.5,"xfrect(3.1,1,3,1)")

xset("alufunction",6)

xstring(4.,0.5,"xfrect(3.1,1,3,1)")

xset("alufunction",3)

xv=[0 1 2 3 4]

yv=[2.5 1.5 1.8 1.3 2.5]

xpoly(xv,yv,"lines",1)

xstring(0.5,2.,"xpoly(xv,yv,""lines"",1)")

xa=[5 6 6 7 7 8 8 9 9 5]

ya=[2.5 1.5 1.5 1.8 1.8 1.3 1.3 2.5 2.5 2.5]

xarrows(xa,ya)

xstring(5.5,2.,"xarrows(xa,ya)")

xarc(0.,5.,4.,2.,0.,64*300.)

xstring(0.5,4,"xarc(0.,5.,4.,2.,0.,64*300.)")

xfarc(5.,5.,4.,2.,0.,64*360.)

//xset("alufunction",6)

xclea(5.6,4.4,2.8,0.8);

xstring(5.8,4.,"xfarc and then xclea")

//xset("alufunction",3)

xstring(0.,4.5,"WRITING-BY-XSTRING()",-22.5)

xnumb([5.5 6.2 6.9],[5.5 5.5 5.5],[3 14 15],1)

isoview(0,12,0,12)

xarc(-5.,12.,5.,5.,0.,64*360.)

xstring(-4.5,9.25,"isoview + xarc",0.)

xset("font",4,5)

A=[" 1" " 2" " 3";" 4" " 5" " 6";"68" " 17.2" " 9"];

xstring(7.,10.,A);

rect=xstringl(7,10,A);

xrect(rect(1),rect(2),rect(3),rect(4));

e have seen that some parameters of the graphics are controlled by a graphic context
( for example the line thickness) and others are controlled through graphics arguments .

� xset : to set graphic context values. Some examples of the use of xset :

(i)-xset("use color",flag) changes to color or gray plot according to the values
(1 or 0) of flag.

(ii)-xset("window",window-number) sets the current window to the window window-number

and creates the window if it doesn't exist.

(iii)-xset("wpos",x,y) �xes the position of the upper left point of the graphic
window.

The choice of the font, the width and height of the window, the driver... can be done
by xset.
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xrect(0,1,3,1) xfrect(3.1,1,3,1) xfrect(3.1,1,3,1) 

xpoly(xv,yv,"lines",1) xarrows(xa,ya) 

xarc(0.,5.,4.,2.,0.,64*300.) xfarc  and then  xclea 
WRITING-BY-XSTRING() 

3    14   15   

isoview + xarc 

68   17.2   9 
  4        5   6 
  1        2   3 

Figure 5.8: Geometric Graphics and Comments

� xget : to get informations about the current graphic context. All the values of the
parameters �xed by xset can be obtained by xget.

� xlfont : to load a new family of fonts from the XWindow Manager

5.4.6 Some Classical Graphics for Automatic Control

� bode : plot magnitude and phase of the frequency response of a linear system.

� gainplot : same as bode but plots only the magnitude of the frequency response.

� nyquist : plot of imaginary part versus real part of the frequency response of a
linear system.

� m_circle : M-circle plot used with nyquist plot.

� chart : plot the Nichols'chart

� black : plot the Black's diagram (Nichols'chart) for a linear system.

� evans : plot the Evans root locus for a linear system.

� plzr : pole-zero plot of the linear system

s=poly(0,'s');

h=syslin('c',(s^2+2*0.9*10*s+100)/(s^2+2*0.3*10.1*s+102.01));

h1=h*syslin('c',(s^2+2*0.1*15.1*s+228.01)/(s^2+2*0.9*15*s+225));

//bode

xsetech([0.,0.,0.5,0.5],[-1,1,-1,1]);

gainplot([h1;h],0.01,100);

//nyquist

xsetech([0.5,0.,0.5,0.5],[-1,1,-1,1]);
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nyquist([h1;h])

//chart and black

xsetech([0.,0.5,0.5,0.5],[-1,1,-1,1]);

black([h1;h],0.01,100,['h1';'h'])

chart([-8 -6 -4],[80 120],list(1,0));

//evans

xsetech([0.5,0.5,0.5,0.5],[-1,1,-1,1]);

H=syslin('c',352*poly(-5,'s')/poly([0,0,2000,200,25,1],'s','c'));

evans(H,100)
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Figure 5.9: Some Plots in Automatic Control

5.4.7 Miscellaneous

� edit_curv : interactive graphic curve editor.

� gr_menu : simple interactive graphic editor. It is a X�g-like simple editor with a

exible use for a nice presentation of graphics : the user can superpose the elements
of gr_menu and use it with the usual possibilities of xset.

� locate : to get the coordinates of one or more points selected with the mouse on a
graphic window.

5.5 3D Plotting

5.5.1 Generic 3D Plotting

� plot3d : 3D plotting of a matrix of points : plot3d(x,y,z) with x,y,z 3 matrices, z
being the values for the points with coordinates x,y. Other arguments are optional
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Figure 5.10: Presentation of Plots

� plot3d1 : 3d plotting of a matrix of points with gray levels

� fplot3d : 3d plotting of a surface described by a function; z is given by an external
z=f(x,y)

� fplot3d1 : 3d plotting of a surface described by a function with gray levels

5.5.2 Specialized 3D Plotting

� param3d : plots parametric curves in 3d space

� contour : level curves for a 3d function given by a matrix

� grayplot10 : gray level on a 2d plot

� fcontour10 : level curves for a 3d function given by a function

� hist3d : 3d histogram

� secto3d : conversion of a surface description from sector to plot3d compatible data

� eval3d : evaluates a function on a regular grid. (see also feval)

5.5.3 Mixing 2D and 3D graphics

When one uses 3D plotting function, default graphic boundaries are �xed, but in R3. If one
wants to use graphic primitives to add informations on 3D graphics, the geom3d function
can be used to convert 3D coordinates to 2D-graphics coordinates. The �gure 5.11
illustrates this feature.

xinit('d7-10.ps');

r=(%pi):-0.01:0;x=r.*cos(10*r);y=r.*sin(10*r);
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deff("[z]=surf(x,y)","z=sin(x)*cos(y)");

t=%pi*(-10:10)/10;

fplot3d(t,t,surf,35,45,"X@Y@Z",[-3,2,3]);

z=sin(x).*cos(y);

[x1,y1]=geom3d(x,y,z);

xpoly(x1,y1,"lines");

[x1,y1]=geom3d([0,0],[0,0],[5,0]);

xsegs(x1,y1);

xstring(x1(1),y1(1),' The point (0,0,0)');

Z

Y

X

 The point (0,0,0) 

Figure 5.11: 2D and 3D plot

5.5.4 Sub-windows

It is also possible to make multiple plotting in the same graphic window (Figure 5.12).

xinit('d7-8.ps');

t=(0:.05:1)';st=sin(2*%pi*t);

xsetech([0,0,1,0.5]);

plot2d2("onn",t,st);

xsetech([0,0.5,1,0.5]);

plot2d3("onn",t,st);

xsetech([0,0,1,1]);

5.5.5 A Set of Figures

In this next example we give a brief summary of di�erent plotting functions for 2D or 3D
graphics. The �gure 5.13 is obtained and inserted in this document with the help of the
command Blatexprs.
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Figure 5.12: Use of xsetech

//some examples

str_l=list();

//

str_l(1)=['plot3d1();';

'title=[''plot3d1 : z=sin(x)*cos(y)''];';

'xtitle(title,'' '','' '');'];

//

str_l(2)=['contour();';

'title=[''contour ''];';

'xtitle(title,'' '','' '');'];

//

str_l(3)=['champ();';

'title=[''champ ''];';

'xtitle(title,'' '','' '');'];

//

str_l(4)=['t=%pi*(-10:10)/10;';

'deff(''[z]=surf(x,y)'',''z=sin(x)*cos(y)'');';

'rect=[-%pi,%pi,-%pi,%pi,-5,1];';

'z=feval(t,t,surf);';

'contour(t,t,z,10,35,45,''X@Y@Z'',[1,1,0],rect,-5);';

'plot3d(t,t,z,35,45,''X@Y@Z'',[2,1,3],rect);';

'title=[''plot3d and contour ''];';

'xtitle(title,'' '','' '');'];

//

for i=1:4,xinit('d7a11.ps'+string(i)');

execstr(str_l(i)),xend();end
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Figure 5.13: Group of �gures
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5.6 Printing and Inserting Scilab Graphics in LATEX

We describe here the use of programs (Unix shells) for handling Scilab graphics and print-
ing the results. These programs are located in the sub-directory bin of Scilab.

5.6.1 Window to Paper

The simplest command to get a paper copy of a plot is to click on the print button of
the ScilabGraphic window.

5.6.2 Creating a Postscript File

We have seen at the beginning of this chapter that the simplest way to get a Postscript
�le containing a Scilab plot is :

-->driver('Pos')

-->xinit('foo.ps')

-->plot3d1();

-->xend()

-->driver('Rec')

-->plot3d1()

-->xbasimp(0,'foo1.ps')

The Postscript �les (foo.ps or foo1.ps ) generated by Scilab cannot be directly sent
to a Postscript printer, they need a preamble. Therefore, printing is done through the use
of Unix scripts or programs which are provided with Scilab. The program Blpr is used to
print a set of Scilab Graphics on a single sheet of paper and is used as follows :

Blpr string-title file1.ps file2.ps > result

You can then print the �le result with the classical Unix command :

lpr -Pprinter-name result

or use the ghostview Postscript interpreter on your Unix workstation to see the result.
You can avoid the �le resultwith a pipe, replacing > result by the printing command

| lpr or the previewing command | ghostview -.
The best result (best sized �gures) is obtained when printing two pictures on a single

page.
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5.6.3 Including a Postscript File in LATEX

The Blatexpr Unix shell and the programs Batexpr2 and Blatexprs are provided in
order to help inserting Scilab graphics in LATEX.

Taking the previous �le foo.ps and typing the following statement under a Unix shell :

Blatexpr 1.0 1.0 foo.ps

creates two �les foo.epsf and foo.tex. The original Postscript �le is left unchanged. To
include the �gure in a LATEX document you should insert the following LATEX code in
your LATEX document :

\input foo.tex

\dessin{The caption of your picture}{The-label}

You can also see your �gure by using the Postscript previewer ghostview.
The program Blatexprs does the same thing: it is used to insert a set of Postscript

�gures in one LATEXpicture.
In the following example, we begin by using the Postscript driver Pos and then initialize

successively 4 Postscript �les fig1.ps, ..., fig4.ps for 4 di�erent plots and at the end
return to the driver Rec (X11 driver with record).

-->//multiple Postscript files for Latex

-->driver('Pos')

-->t=%pi*(-10:10)/10;

-->plot3d1(t,t,sin(t)'*cos(t),35,45,'X@Y@Z',[2,2,4]);

-->xend()

-->contour(1:5,1:10,rand(5,10),5);

-->xend()

-->champ(1:10,1:10,rand(10,10),rand(10,10));

-->xend()
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-->t=%pi*(-10:10)/10;

-->deff('[z]=surf(x,y)','z=sin(x)*cos(y)');

-->rect=[-%pi,%pi,-%pi,%pi,-5,1];

-->z=feval(t,t,surf);

-->contour(t,t,z,10,35,45,'X@Y@Z',[1,1,0],rect,-5);

-->plot3d(t,t,z,35,45,'X@Y@Z',[2,1,3],rect);

-->title=['plot3d and contour '];

-->xtitle(title,' ',' ');

-->xend()

-->driver('Rec')

Then we execute the command :

Blatexprs multi fig1.ps fig2.ps fig3.ps fig4.ps

and we get 2 �les multi.tex and multi.ps and you can include the result in a LATEX source
�le by :

\input multi.tex

\dessin{The caption of your picture}{The-label}

Note that the second line dessin... is absolutely necessary and you have of course to
give the absolute path for the input �le if you are working in another directory (see below).
The �le multi.tex is only the de�nition of the command dessin with 2 parameters : the
caption and the label; the command dessin can be used with one or two empty arguments
`` `` if you want to avoid the caption or the label.

The Postscipt �les are inserted in LATEX with the help of the \special command and
with a syntax that works with the dvips program.

The program Blatexpr2 is used when you want two pictures side by side.

Blatexpr2 Fileres file1.ps file2.ps

It is sometimes convenient to have a main LATEX document in a directory and to
store all the �gures in a subdirectory. The proper way to insert a picture �le in the main
document, when the picture is stored in the subdirectory figures, is the following :

\def\Figdir{figures/} % My figures are in the {\tt figures/ } subdirectory.

\input{figures/fig.tex}

\dessin{The caption of you picture}{The-label}
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Figure 5.14: Blatexp2 Example

The declaration \def\Figdir{figures/} is used twice, �rst to �nd the �le fig.tex

(when you use latex), and second to produce a correct pathname for the special

LATEX command found in fig.tex. (used at dvips level).
-WARNING : the default driver is Rec, i.e. all the graphic commands are recorded,

one record corresponding to one window. The xbasc() command erases the plot on the
active window and all the records corresponding to this window. The clear button has
the same e�ect; the xclear command erases the plot but the record is preserved. So you
almost never need to use the xbasc() or clear commands. If you use such a command
and if you re-do a plot you may have a surprising result (if you forget that the environment
is wiped out); the scale only is preserved and so you may have the \window-plot" and the
\paper-plot" completely di�erent.

5.6.4 Postscript by Using X�g

Another useful way to get a Postscript �le for a plot is to use X�g. By the simple command
xs2fig(active-window-number,file-name) you get a �le in X�g syntax.

This command needs the use of the driver Rec.
The window ScilabGraphic0 being active, if you enter :

-->t=-%pi:0.3:%pi;

-->plot3d1(t,t,sin(t)'*cos(t),35,45,'X@Y@Z',[2,2,4]);

-->xs2fig(0,'demo.fig');

you get the �le demo.fig which contains the plot of window 0.
Then you can use X�g and after the modi�cations you want, get a Postscript �le that

you can insert in a LATEX �le. The following �gure is the result of X�g after adding some
comments.
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Figure 5.15: Encapsulated Postscript by Using X�g
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5.6.5 Encapsulated Postscript Files

As it was said before, the use of Blatexpr creates 2 �les : a .tex �le to be inserted in the
LATEX �le and a .epsf �le.

It is possible to get the encapsulated Postscript �le corresponding to a .ps �le by using
the command BEpsf.

Notice that the .epsf �le generated by Blatexpr is not an encapsulated Postscript
�le : it has no bounding box and BEpsf generates a .eps �le which is an encapsulated
Postscript �le with a bounding box.



Chapter 6

Interfacing C or Fortran programs

Scilab can be easily interfaced with Fortran or C programs. This is useful to have faster
code or to use speci�c numerical code for, e.g., the simulation or optimization of user
de�ned systems, or speci�c Lapack or netlib modules. In fact, interfacing numerical
code appears necessary in most nontrivial applications. For interfacing C or Fortran
programs, it is of course necessary to link these programs with Scilab. This can be done
by a dynamic (incremental) link or by creating a new executable code for Scilab. For
executing a C or Fortran program linked with Scilab, its input parameters must be given
speci�c values transferred from Scilab and its output parameters must be transformed
into Scilab variables. It is also possible that a linked program is automatically executed
by a high-level primitive: for instance Scilab ode function can integrate the di�erential
equation _x = f(t; x) with a rhs function f de�ned as a C or Fortran program which is
dynamically linked to Scilab (see 4.4.2).

The simplest way to call external programs is to use the link primitive (which dy-
namically links the user's program with Scilab) and then to interactively call the linked
routine by call primitive which transmits Scilab variables (matrices or strings) to the
linked program and transforms back the output parameters into Scilab variables. Note
that ode/dae solvers and non linear optimization primitives can be directly used with C
or Fortran user-de�ned programs dynamically linked(see 6.1.1). .

An other way to add C or Fortran code to Scilab is by building an interface program.
The interface program can be written by the user following the examples given in the
routines/examples/addinter-tutorial directory. Matlab-like interfaces are given in
the directory routines/examples/addinter-tutorial.

The interface program can also be generated by intersci. Intersci builds the inter-
face program from a .desc �le which describes both the C or Fortran program(s) to be
used and the name and parameters of the corresponding Scilab function(s).

Finally it is possible to add a permanent new primitive to Scilab by building an interface
program as above and making a new executable code for Scilab. This is done by updating
the fundef �le. In this case, the interface program made by intersci should be given
a speci�c name (e.g. the default name matus2) and a number. The �le default/fundef
should also be updated as done by intersci. A new executable code is generated by
typing \make all" in the main Scilab directory.

97
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6.1 Using dynamic link

Several simple examples of dynamic link are given in the directory examples/link-examples.
In this section, we brie
y describe how to call a dynamically linked program.

6.1.1 Dynamic link

The command link('path/pgm.o','pgm',flag) links the compiled program pgm to Scilab.
Here pgm.o is an object �le located in the path directory and pgm is an entry point (pro-
gram name) in the �le pgm.o (An object �le can have several entry points: to link them,
use a vector of character strings such as ['pgm1','pgm2']).

flag should be set to 'C' for a C-coded program and to 'F' for a Fortran subroutine.
('F' is the default 
ag and can be omitted).

If the link operation is OK, scilab returns an integer n associated with this linked
program. To undo the link enter ulink(n).

The command c_link('pgm') returns true if pgm is currently linked to Scilab and
false if not.
Here is a example, with the Fortran BLAS daxpy subroutine used in Scilab:

-->n=link(SCI+'/routines/calelm/daxpy.o','daxpy')

linking files /usr/local/lib/scilab-2.4/routines/calelm/daxpy.o

to create a shared executable.

Linking daxpy (in fact daxpy_)

Link done

n =

0.

-->c_link('daxpy')

ans =

T

-->ulink(n)

-->c_link('daxpy')

ans =

F

For more details, enter help link.

6.1.2 Calling a dynamically linked program

The call function can be used to call a dynamically linked program. Consider for
example the daxpy Fortran routine. It performs the simple vector operation y=y+a*x

or, to be more speci�c, y(1)=y(1)+a*x(1), y(1+incy)=y(1+incy)+a*x(1+incx),...

y(1+n*incy)=y(1+n*incy)+a*x(1+n*incx) where y and x are two real vectors. The
calling sequence for daxpy is as follows:
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subroutine daxpy(n,a,x,incx,y,incy)

To call daxpy from Scilab we must use a syntax as follows:

[y1,y2,y3,...]=call('daxpy', inputs description, 'out', outputs description)

Here inputs description is a set of parameters
x1,p1,t1, x2,p2,t2, x3,p3,t3 ...

where xi is the Scilab variable (real vector or matrix) sent to daxpy, pi is the position
number of this variable in the calling sequence of daxpy and ti is the type of xi in daxpy

(t='i' t='r' t='d' stands for integer, real or double).
outputs description is a set of parameters

[r1,c1],p1,t1, [r2,c2],p2,t2, [r3,c3],p3,t3,..
which describes each output variable. [ri,ci] is the 2 x 1 integer vector giving the
number of rows and columns of the ith output variable yi. pi and ti are as for input
variables (they can be omitted if a variable is both input and output).

We see that the arguments of call divided into four groups. The �rst argument
'daxpy' is the name of the called subroutine. The argument 'out' divides the remaining
arguments into two groups. The group of arguments between 'daxpy' and 'out' is the
list of input arguments, their positions in the call to daxpy, and their data type. The
group of arguments to the right of 'out' are the dimensions of the output variables,
their positions in the call to daxpy, and their data type. The possible data types are real,
integer, and double precision which are indicated, respectively, by the strings 'r', 'i', and
'd'. Here we calculate y=y+a*x by a call to daxpy (assuming that the link command has
been done). We have six input variables x1=n, x2=a, x3=x, x4=incx, x5=y, x6=incy.
Variables x1, x4 and x6 are integers and variables x2, x3, x5 are double. There is one
output variable y1=y at position p1=5. To simplify, we assume here that x and y have the
same length and we take incx=incy=1.

-->a=3;

-->x=[1,2,3,4];

-->y=[1,1,1,1];

-->incx=1;incy=1;

-->n=size(x,'*');

-->y=call('daxpy',...

n,1,'i',...

a,2,'d',...

x,3,'d',...

incx,4,'i',...

y,5,'d',...

incy,6,'i',...

'out',...

[1,n],5,'d');

y =
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! 4. 7. 10. 13. !

(Since y is both input and output parameter, we could also use the simpli�ed syntax
call(...,'out',5) instead of call(...,'out'[1,n],5,'d')).

The same example with the C function daxpy (from CBLAS):

int daxpy(int *n, double *da, double *dx, int *incx, double *dy, int *incy)

...

-->link('daxpy.o','daxpy','C')

linking files daxpy.o to create a shared executable

Linking daxpy (in fact daxpy)

Link done

ans =

1.

-->y=call('daxpy',...

n,1,'i',...

a,2,'d',...

x,3,'d',...

incx,4,'i',...

y,5,'d',...

incy,6,'i',...

'out',...

[1,n],5,'d');

-->y

y =

! 4. 7. 10. 13. !

The routines which are linked to Scilab can also access internal Scilab variables: see
the examples in given in the examples/links directory.

6.2 Interface programs

6.2.1 Building an interface program

Examples of interface programs are given in the directory examples/addinter-tutorial

and examples/addinter-examples.
The two �les template.c and template.f are skeletons of interface programs.

� The �le Examplc.c is a C interface for the function foubare2c which is de�ned
in the �le src/foubare2c.c. This interface can be tested with the Scilab script
Examplc.sce.

� The �le Examplf.f is a Fortran interface for the function foubare2f which is de�ned
in the �le src/foubare2f.f. This interface can be tested with the Scilab script
Examplc.sce.
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The interface programs use a set of C or Fortran routines which should be used to build
the interface program. The simplest way to learn how to build an interface program is
to customize the previous skeletons �les and to look at the examples provided in this
directory. An interface program de�nes a set of Scilab functions and the calls to the
corresponding numerical programs. Note that a unique interface program can be used to
interface an arbitrary (but less that 99) number of functions.
The functions used to build an interface are Fortran subroutines when the interface is
written in Fortran and are coded as C macros (de�ned in stack-c.h ) when the interface
is coded in C. The main functions are as follows:

� CheckRhs(minrhs, maxrhs)

CheckLhs(minlhs, maxlhs)

Function CheckRhs is used to check that the Scilab function is called with
minrhs <= Rhs <= maxrhs. Function CheckLhs is used to check that the ex-
pected return values are in the range minlhs <= Lhs <= maxlhs. (Usually one
has minlhs=1 since a Scilab function can be always be called with less lhs argu-
ments than expected).

� GetRhsVar(k,ct,mk,nk,lk)

Note that k (integer) and ct (string) are inputs and mk,nk and lk (integers) are out-
puts of GetRhsVar. This function de�nes the type (ct) of input variable numbered
k, i.e. the kth input variable in the calling sequence of the Scilab function. The pair
mk,nk gives the dimensions (number of rows and columns) of variable numbered k

if it is a matrix. If it is a chain mk*nk is its length. lk is the adress of variable
numbered k in Scilab internal stack. The type of variable number k, ct, should be
set to 'd', 'r', 'i' or 'c' which stands for double, 
oat (real), integer or char-
acter respectively. The interface should call function GetRhsVar for each of the rhs
variables of the Scilab function with k=1, k=2,..., k=Rhs. Note that if the Scilab
argument doesn't match the requested type then Scilab enters an error function and
returns from the interface function.

� CreateVar(k,ct,mk,nk,lk)

Here k,ct,mk,nk are inputs of CreateVar and lk is an output of CreateVar. The
parameters are as above. Variable numbered k is created in Scilab internal satck
at adress lk. When calling CreateVar, k must be greater than Rhs i.e. k=Rhs+1,

k=Rhs+2, .... If due to memory lack, the argument can't be created, then a Scilab
error function is called and the interface function returns.

� CreateVarFromPtr(k,ct,mk,nk,lk)

Here k,ct,mk,nk,lk are all inputs of CreateVarFromPtr and lk is pointer created
by a call to a C function. This function is used when a C object was created inside
the interfaced function and a Scilab object is to be created using a pointer to this
C object (see function intfce2c in �le examples/addinter-examples/Testc.c).
The function FreePtr should be used to free the pointer.

Once the variables have been processed by GetRhsVar or created by CreateVar, they
are given values by calling one or several numerical routine. The call to the numerical
routine is done in such a way that each argument of the routine points to the corresponding
Scilab variable (see example below). Character, integer, real, double type variables are in
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the cstk (resp. istk, sstk, stk) Scilab internal stack at the adresses lk's returned by
GetRhsVar or CreateVar.

Then they are returned to Scilab as lhs variables (this is done by function PutLhsVar).
The interface should de�ne how the lhs (output) variables are numbered. This is done by
the global variable LhsVar. For instance

LhsVar(1) = 5;

LhsVar(2) = 3;

LhsVar(3) = 1;

LhsVar(4) = 2;

PutLhsVar();

means that the Scilab function has at most 4 output parameters which are variables
numbered k= 5, k=3, k=1, k=2 respectively.

The functions sciprint(amessage) and Error(k) are used for managing messages
and errors.

Other useful functions which can be used are the following.

� ReadMatrix(aname,m,n,w)

This function reads a matrix in Scilab internal stack. aname is a character string,
name of a Scilab matrix. Outputs are integers m,n and w, the entries of the matrix
ordered columnwise. w is a copy of the Scilab variable called aname.

� ReadString(aname,n,w)

This function reads a string in Scilab internal stack. n is the length of the string.

� GetMatrixptr(aname,m,n,l)

This function returns the dimensions m, n and the address l of Scilab variable aname.

The Fortran functions have the same syntax and return logical values.

6.2.2 Example

The following interface is taken from the examples in the examples/addinter-examples
directory. The function to be interfaced has the following calling sequence:

int foubare2c (char *ch, int *a, int *ia, float *b, int *ib,

double *c, int *mc, int *nc, double *d, double *w,

int *err));

The associated Scilab function is:

function [y1,y2,y3,y4,y5]=foobar(x1,x2,x3,x4)

where x1 is a character string, and x2, x3, x4 are matrices which, in the called C function,
foubare2c are respectively integer, real and double arrays.

The interface program is the following:
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int intsfoubare(fname)

char *fname;

{

int i1, i2;

static int ierr;

static int l1, m1, n1, m2, n2, l2, m3, n3, l3, m4, n4, l4, l5, l6;

static int minlhs=1, minrhs=4, maxlhs=5, maxrhs=4;

Nbvars = 0;

CheckRhs(minrhs,maxrhs) ;

CheckLhs(minlhs,maxlhs) ;

GetRhsVar(1, "c", &m1, &n1, &l1);

GetRhsVar(2, "i", &m2, &n2, &l2);

GetRhsVar(3, "r", &m3, &n3, &l3);

GetRhsVar(4, "d", &m4, &n4, &l4);

CreateVar(5, "d", &m4, &n4, &l5);

CreateVar(6, "d", &m4, &n4, &l6);

i1 = n2 * m2;

i2 = n3 * m3;

foubare2c(cstk(l1), istk(l2), &i1, sstk(l3), &i2, stk(l4),

&m4, &n4, stk(l5),stk(l6), &ierr);

if (ierr > 0)

{

sciprint("Internal Error");

Error(999);

return 0;

}

LhsVar(1) = 5;

LhsVar(2) = 4;

LhsVar(3) = 3;

LhsVar(4) = 2;

LhsVar(5) = 1;

PutLhsVar();

return 0;

}

static TabF Tab[]={

{intsfoubare, "foobar"}

} ;

int C2F(foobar)()

{

Rhs = Max(0, Rhs);

(*(Tab[Fin-1].f))(Tab[Fin-1].name);

return 0;

}

Note that the last part of the interface program should contain in the table TabF the
pair = (name of the interface program, name of the associated Scilab function). If several
functions are interfaced in the interface a pair of names should be given for each function.
The entrypoint foobar is used by the dynamic link command addinter.

6.2.3 addinter command

Once the interface program is written, it must be compiled to produce an object �le. It is
then linked to Scilab by the addinter command.

The syntax of addinter is the following:
addinter([`interface.o', 'userfiles.o'],'entrypt',['scifcts'])
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<Scilab function name> <function arguments>

<Scilab variable> <Scilab type> <possible arguments>
...

...
...

...
...

<Fortran subroutine name> <subroutine arguments>

<Fortran argument> <Fortran type>
...

...
...

...
out <type> <formal output names>

<formal output name> <variable>
...

...
...

...
******************************

Table 6.1: Description of a pair of Scilab function and Fortran subroutine

Here interface.o is the object �le of the interface, userfiles.o is the set of user's
routines to be linked, entrypt is the entry point of the interface routine and 'scifcts' is
the set of Scilab functions to be interfaced.

In the previous example addinter can be called as follows:

addinter(['Examplc.o','foubare2c.o'],'foobar','foubare');

6.3 Intersci

Intersci is a program for building an interface �le between Scilab and Fortran subroutines
or C functions. This interface describes both the routine called and the associated Scilab
function. The interface is automatically generated from a description �le with .desc suÆx.

6.3.1 Using Intersci

In the following, we will only consider Fortran subroutine interfacing. The process is
nearly the same for C functions (see 6.3.1).

To use Intersci execute the command:
intersci <interface name>

where <interface name>.desc is the �le describing the interface.
The intersci script �le is located in the directory SCIDIR/bin.
Then the interface �le <interface name>.f is created. A Scilab script �le .sce is also

created. This �le, with appropriate changes, can be used to link the interface with Scilab.

The �le <interface name>.desc is a sequence of descriptions of pairs formed by the
Scilab function and the corresponding Fortran subroutine (see table 6.1).

Each description is made of three parts:

� description of Scilab function and its arguments

� description of Fortran subroutine and its arguments

� description of the output of Scilab function.



CHAPTER 6. INTERFACING C OR FORTRAN PROGRAMS 105

Description of Scilab function The �rst line of the description is composed by the
name of the Scilab function followed by its input arguments.

The next lines describe Scilab variables: the input arguments and the outputs of the
Scilab function, together with the arguments of the Fortran subprogram with type work

(for which memory must be allocated). It is an error not to describe such arguments.
The description of a Scilab variable begins by its name, then its type followed by

possible informations depending on the type.
Types of Scilab variables are:

any any type: only used for an input argument of Scilab function.

column column vector: must be followed by its dimension.

list list: must be followed by the name of the list, <list name>. This name must cor-
respond to a �le <list name>.list which describes the structure of the list (see
6.3.1).

matrix matrix: must be followed by its two dimensions.

polynom polynomial: must be followed by its dimension (size) and the name of the
unknown.

row row vector: must be followed by its dimension.

scalar scalar.

string character string: must be followed by its dimension (length).

vector row or column vector: must be followed by its dimension.

work working array: must be followed by its dimension. It must not correspond to an
input argument or to the output of the Scilab function.

A blank line and only one ends this description.

Optional input arguments Optional arguments are de�ned as follows:

� [c val] . This means that c is an optional argument with default value val. val
can be a scalar: e.g. [c 10], an array: e.g. [c (4)/1,2,3,4/] or a chain: e.g.
[c pipo]

� {b xx}. This means that b is an optional argument. If not found, one looks for xx
in current existing Scialb variables.

Description of Fortran subroutine The �rst line of the description is composed by
the name of the Fortran subroutine followed by its arguments.

The next lines describe Fortran variables: the arguments of the Fortran subroutine.
The description of a Fortran variable is made of its name and its type. Most Fortran

variables correspond to Scilab variables (except for dimensions, see 6.3.1) and must have
the same name as the corresponding Scilab variable.

Types of Fortran variables are:

char character array.
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double double precision variable.

int integer variable.

real real variable.

Other types types also exist, that are called \external" types see 6.3.1.

A blank line and only one ends this description.

Description of the output of Scilab function The �rst line of this description must
begin by the word out followed by the type of Scilab output.

Types of output are:

empty the Scilab function returns nothing.

list a Scilab list: must be followed by the names of Scilab variables which form the list.

sequence a Scilab sequence: must be followed by the names of Scilab variables elements
of the sequence. This is the usual case.

This �rst line must be followed by other lines corresponding to output type conversion.
This is the case when an output variable is also an input variable with di�erent Scilab
type: for instance an input column vector becomes an output row vector. The line which
describes this conversion begins by the name of Scilab output variable followed by the
name of the corresponding Scilab input variable. See 6.3.1 as an example.

A line beginning with a star \*" ends the description of a pair of Scilab function and
Fortran subroutine. This line is compulsory even if it is the end of the �le. Do not forget
to end the �le by a carriage return.

Dimensions of non scalar variables When de�ning non scalar Scilab variables (vec-
tors, matrices, polynomials and character strings) dimensions must be given. There are a
few ways to do that:

� It is possible to give the dimension as an integer (see 6.3.1).

� The dimension can be the dimension of an input argument of Scilab function. This
dimension is then denoted by a formal name (see 6.3.1).

� The dimension can be de�ned as an output of the Fortran subroutine. This means
that the memory for the corresponding variable is allocated by the Fortran subrou-
tine. The corresponding Fortran variable must necessary have an external type (see
6.3.1 and 6.3.1).

Intersci is not able to treat the case where the dimension is an algebraic expression of
other dimensions. A Scilab variable corresponding to this value must de�ned.
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Fortran variables with external type External types are used when the dimension
of the Fortran variable is unknown when calling the Fortran subroutine and when its
memory size is allocated in this subroutine. This dimension must be an output of the
Fortran subroutine. In fact, this will typically happen when we want to interface a C
function in which memory is dynamically allocated.

Existing external types:

cchar character string allocated by a C function to be copied into the corresponding
Scilab variable.

ccharf the same as cchar but the C character string is freed after the copy.

cdouble C double array allocated by a C function to be copied into the corresponding
Scilab variable.

cdoublef the same as cdouble but the C double array is freed after the copy.

cint C integer array allocated by a C function to be copied into the corresponding Scilab
variable.

cintf the same as cint but the C integer array is freed after the copy.

In fact, the name of an external type corresponds to the name of a C function. This
C function has three arguments: the dimension of the variable, an input pointer and an
output pointer.

For instance, below is the code for external type cintf:

#include "../machine.h"

/* ip is a pointer to a Fortran variable coming from SCILAB

which is itself a pointer to an array of n integers typically

coming from a C function

cintf converts this integer array into a double array in op

moreover, pointer ip is freed */

void C2F(cintf)(n,ip,op)

int *n;

int *ip[];

double *op;

{

int i;

for (i = 0; i < *n; i++)

op[i]=(double)(*ip)[i];

free((char *)(*ip));

}

For the meaning of #include "../machine.h" and C2F see 6.3.1.

Then, the user can create its own external types by creating its own C functions with
the same arguments. Intersci will generate the call of the function.
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<comment on the variable element of the list>

<name of the variable element of list> <type> <possible arguments>

******************************

Table 6.2: Description of a variable element of a list

Using lists as input Scilab variables An input argument of the Scilab function can be
a Scilab list. If <list name> is the name of this variable, a �le called <list name>.list

must describe the structure of the list. This �le permits to associate a Scilab variable
to each element of the list by de�ning its name and its Scilab type. The variables are
described in order into the �le as described by table 6.2.

Then, such a variable element of the list, in the �le <interface name>.desc is referred
to as its name followed by the name of the corresponding list in parenthesis. For instance,
la1(g) denotes the variable named la1 element of the list named g.

An example is shown in 6.3.1.

C functions interfacing

The C function must be considered as a procedure i.e. its type must be void or the
returned value must not be used.

The arguments of the C function must be considered as Fortran arguments i.e. they
must be only pointers.

Moreover, the name of the C function must be recognized by Fortran. For that, the
include �le machine.h located in the directory <Scilab directory>/routines should be
included in C functions and the macro C2F should be used.

Writing compatible code

Messages and Error Messages To write messages in the Scilab main window, user
must call the out Fortran routine or cout C procedure with the character string of the
desired message as input argument.

To return an error 
ag of an interfaced routine user must call the erro Fortran routine
or cerro C procedure with the character string of the desired message as input argument.
This call will produce the edition of the message in the Scilab main window and the error
exit of Scilab associated function.

Input and output
To open �les in Fortran, it is highly recommended to use the Scilabroutine clunit. If

the interfaced routine uses the Fortran open instruction, logical units must in any case be
greater than 40.

call clunit( lunit, file, mode)

with:

� file the �le name character string

� mode a two integer vector de�ning the opening mode mode(2) de�nes the record
length for a direct access �le if positive. mode(1) is an integer formed with three
digits f, a and s
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{ f de�nes if �le is formatted (0) or not (1)

{ a de�nes if �le has sequential (0) or direct access (1)

{ s de�nes if �le status must be new (0), old (1), scratch (2) or unknown (3)

Files opened by a call to clunit must be close by

call clunit( -lunit, file, mode)

In this case the file and mode arguments are not referenced.

Examples

Example 1 The Scilab function is a=calc(str). Its input is a string and its output is
a scalar.

The corresponding Fortran subroutine is subroutine fcalc(str,a). Its arguments
are a string str (used as input) and an integer a (used as output).

We reserve a �xed dimension of 10 for the string.
The description �le is the following:

calc str

str string 10

a scalar

fcalc str a

str char

a integer

out a

***********************

Example 2 The name of the Scilab function is c=som(a,b). Its two inputs are row
vectors and its output is a column vector.

The corresponding Fortran subroutine is subroutine fsom(a,n,b,m,c). Its argu-
ments are a real array with dimension n (used as input), another real array with dimen-
sion m (used as input) and a real array (used as output). These dimensions m and n

are determined at the calling of the Scilab function and do not need to appear as Scilab
variables.

Intersci will do the job to make the necessary conversions to transform the double
precision (default in Scilab) row vector a into a real array and to transform the real array
c into a double precision row vector.

The description �le is the following:

som a b

a row m

b row n

c column n

fsom a n b m c

a real

n integer
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b real

m integer

c real

out sequence c

***********************

Example 3 The Scilab function is [o,b]=ext(a). Its input is a matrix and its outputs
are a matrix and a column vector.

The corresponding Fortran subroutine is fext(a,m,n,b,p) and its arguments are an
integer array (used as input and output), its dimensions m,n (used as input) and another
integer array and its dimension p (used as outputs).

The dimension p of the output b is computed by the Fortran subroutine and the
memory for this variable is also allocated by the Fortran subroutine (perhaps by to a call
to another C function). So the type of the variable is external and we choose cintf.

Moreover, the output a of the Scilab function is the same as the input but its type
changes from a m�n matrix to a n�m matrix. This conversion is made my introducing
the Scilab variable o

The description �le is the following:

ext a

a matrix m n

b column p

o matrix n m

fext a m n b p

a integer

m integer

n integer

b cintf

p integer

out sequence o b

o a

***************************

Example 4 The name of the Scilab function is contr. Its input is a list representing a
linear system given by its state representation and a tolerance. Its return is a scalar (for
instance the dimension of the controllable subspace).

The name of the corresponding Fortran subroutine is contr and its arguments are the
dimension of the state of the system (used as input), the number of inputs of the system
(used as input), the state matrix of the system (used as input), the input matrix of the
system (used as input), an integer giving the dimension of the controllable subspace (used
as output), and the tolerance (used as input).

The description �le is the following:

contr sys tol

tol scalar

sys list lss
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icontr scalar

contr nstate(sys) nin(sys) a(sys) b(sys) icontr tol

a(sys) double

b(sys) double

tol double

nstate(sys) integer

nin(sys) integer

icontr integer

out sequence icontr

******************************

The type of the list is lss and a �le describing the list lss.list is needed. It is shown
below:

1 type

type string 3

******************************

2 state matrix

a matrix nstate nstate

******************************

3 input matrix

b matrix nstate nin

******************************

4 output matrix

c matrix nout nstate

******************************

5 direct tranfer matrix

d matrix nout nin

******************************

6 initial state

x0 column nstate

******************************

7 time domain

t any

******************************

The number of the elements is not compulsory in the comment describing the elements
of the list but is useful.

Adding a new primitive

It is possible to add a set a new built-in functions to Scilab by a permanent link the
interface program. For that, it is necessary to update the �les default/fundef and
routines/callinter.h.

When intersci is invoked as follows:

intersci <interface name> <interface number>
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intersci then builds a .fundef �le which is used to update the default/fundef �le.
To add a new interface the user needs also to update the routines/callinter.h �le

with a particular value of fun Fortran variable corresponding to the new interface number.
Two unused empty interface routines called by default (matusr.f and matus2.f) are

prede�ned and may be replaced by the interface program. Their interface numbers 14 and
24 respectively. They can be used as default interface programs. The executable code of
Scilab is then made by typing \make all" or \make bin/scilex" in Scilab directory.

6.4 The routines/default directory

The SCIDIR/routines/default directory contains a set of C and Fortran routines which
can be customized by the user. When customizing a routine in this directory a new
executable code for Scilab is made by typing make all in the main Scilab directory. It is
possible to add new primitives by modifying the default �les given in this directory. The
�le Ex-fort.f contains a example of a subroutine (bidon2) which can be interactively
called by the Scilab call command. Thus, it is possible to call a C or Fortran routine by
modifying the Ex-fort.f �le, re-making Scilab and then using the call function. The
link operation now made outside Scilab by the make all command which creates a full
new executable code for Scilab (SCIDIR/bin/scilex).

Let us consider again the example of the daxpy function. We want to call it from
Scilab by the following function

function y=scilabdaxpy(a,x,incx,y,incy)

y=call('daxpy1',a,x,incx,y,incy)

which performs the following:
y(1:incy:n*incy)=y(1:incy:n*incy)+a*x(1:incx:n*incx)

The call function looks for the called program (here daxpy1) in the interface �le default/Ex-fort.f:
for that, it is necessary that the name daxpy1 appear in the �le default/Flist. (We do
not use the link command here).

Note that the call function just sends the Scilab variables a,x,incx,y,incy to the in-
terface program Ex-fort.f. These variables are associated with the numbers 1,2,3,4,5,6,
respectively in the interface program Ex-fort.f. For our scilabdaxpy function, we per-
form the following steps:

� Add the name daxpy1 to the appropriate list of functions in the �le Flist in the
routines/default directory:

interf_list= ... daxpy1

� Edit the �le routines/default/Ex-fort.f and insert the following code:

subroutine daxpy1()

include '../stack.h'

n=msize(2,mx,nx)

call alloc(1,1,1,1,'d')

call alloc(2,n,mx,nx,'d')
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call alloc(3,1,1,1,'i')

call alloc(4,n,mx,nx,'d')

call alloc(5,1,1,1,'i')

call daxpy(n,stk(ladr(1)),stk(ladr(2)),stk(ladr(3)),

+ stk(ladr(4)),stk(ladr(5)))

call back(4)

return

end

The interface is done using the functions msize, alloc and back. When the command
call('daxpy1',a,x,incx,y,incy) is issued, each variable a,x,incx,y,incy is automat-
ically assigned a number in Ex-fort, in increasing order. Here a is assigned number 1, x
is assigned number 2, etc. Variable # n is located in Scilab internal stack stk at adress
ladr(n). For instance, x, (the third variable in daxpy calling sequence), is associated with
the pointer ladr(2) in stk since x is variable # 2.

The statement n=msize(2,mx,nx) retrieves the dimensions mx, nx of variable # 2 i.e.
x and n=mx*mx i.e. n=number of rows � number of columns.

This function allows to know the dimensions of all the variables passed to call. At this
stage, the user can test that the dimensions of the variables are correct; the corresponding
error message can be done as follows:

buf='error message'

call error(9999)

return

The function alloc de�nes the type of a variable (integer, real, double), sets its di-
mensions and allocate memory for it. For instance call alloc(4,mx*nx,mx,nx,'d') is
used to de�ne the fourth variable (y) as a matrix with mx rows and nx columns of type
\double". The last parameter of alloc should be 'i' for integer, 'r' for real or 'd' for
double.

When alloc is called with a number n (as �rst parameter) which does not correspond
to a input of call, a valid new adress (pointer) ladr(n) is automatically set. For instance
the statement call alloc(6,12,4,3,'i') will return in ladr(6) a pointer for a 6th
matrix variable (not in the parameters of call) with dimensions 3 � 4 and integer type.

Note that the default type for variables is 'd' i.e. double. For such variables, the call to
alloc can be omitted: in our example, only the statements call alloc(3,...,'i') and
call alloc(5,...,'i')which convert incx and incy to integers are necessary. However,
the call to alloc is always necessary for de�ning a variable which does not appear in the
call parameters.

After the call to daxpy, the function back(i) returns variable number i to Scilab.
This variable has the dimensions set by the previous call to alloc and is converted into a
Scilab matrix.

6.4.1 Argument functions

Some built-in nonlinear solvers, such as ode or optim, require a speci�c function as ar-
gument. For instance in the Scilab command ode(x0,t0,t,fydot), fydot is the speci�c
argument function for the ode primitive. This function can be a either Scilab function or
an external function written in C or Fortran. In both cases, the argument function must
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obey a speci�c syntax. In the following we will consider, as running example, using the
ode primitive with a rhs function written in Fortran. The same steps should be followed
for all primitives which require a function as argument.

If the argument function is written in C or Fortran, there are two ways to call it:

� -Use dynamic link

-->link('myfydot.o','myfydot') //or -->link('myfydot.o','myfydot','C')

-->ode(x0,t0,t,'myfydot')

� -Use the Ex-ode.f interface in the routines/default directory (and make all in
Scilab directory). The call to the ode function is as above:

-->ode(x0,t0,t,'myfydot')

In this latter case, to add a new function, two �les should be updated:

� The Flist �le: Flist is list of entry points. Just add the name of your function at
in the appropriate list of functions.

ode_list= ... myfydot

� The Ex-ode.f (or Ex-ode-more.f) �le: this �le contains the source code for argu-
ment functions. Add your function here.

Many exemples are provided in the default directory. More complex examples are
also given. For instance it is shown how to use Scilab variables as optional parameters of
fydot.

6.5 Maple to Scilab Interface

To combine symbolic computation of the computer algebra system Maple with the numer-
ical facilities of Scilab, Maple objects can be transformed into Scilab functions. To assure
eÆcient numerical evaluation this is done through numerical evaluation in Fortran. The
whole process is done by a Maple procedure called maple2scilab.

6.6 Maple2scilab

The procedure maple2scilab converts a Maple object, either a scalar function or a ma-
trix into a Fortran subroutine and writes the associated Scilab function. The code of
maple2scilab is in the directory SCIDIR/maple.

The calling sequence of maple2scilab is as follows:
maple2scilab(function-name,object,args)

� The �rst argument, function-name is a name indicating the function-name in Scilab.

� The second argument object is the Maple name of the expression to be transferred
to Scilab.

� The third argument is a list of arguments containing the formal parameters of the
Maple-object object.
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When maple2scilab is invoked in Maple, two �les are generated, one which contains
the Fortran code and another which contains the associated Scilab function. Aside their
existence, the user has not to know about their contents.

The Fortran routine which is generated has the following calling sequence:
<Scilab-name>(x1,x2,...,xn,matrix)

and this subroutine computes matrix(i,j) as a function of the arguments x1,x2,...,xn.
Each argument can be a Maple scalar or array which should be in the argument list. The
Fortran subroutine is put into a �le named <Scilab-name>.f, the Scilab-function into a
�le named <Scilab-name>.sci. For numerical evaluation in Scilab the user has to compile
the Fortran subroutine, to link it with Scilab (e.g. Menu-bar option 'link') and to load the
associated function (Menu-bar option 'getf'). Information about link operation is given
in Scilab's manual: Fortran routines can be incorporated into Scilab by dynamic link or
through the Ex-fort.f �le in the default directory. Of course, this two-step procedure
can be automatized using a shell-script (or using unix in Scilab). Maple2scilab uses the
\Macrofort" library which is in the share library of Maple.

6.6.1 Simple Scalar Example

Maple-Session

> read(`maple2scilab.maple`):

> f:=b+a*sin(x);

f := b + a sin(x)

> maple2scilab('f_m',f,[x,a,b]);

Here the Maple variable f is a scalar expression but it could be also a Maple vector or
matrix. 'f_m' will be the name of f in Scilab (note that the Scilab name is restricted
to contain at most 6 characters). The procedure maple2scilab creates two �les: f_m.f
and f_m.sci in the directory where Maple is started. To specify another directory just
de�ne in Maple the path : rpath:=`/work/` ; then all �les are written in the sub-directory
work. The �le f_m.f contains the source code of a stand alone Fortran routine which is
dynamically linked to Scilab by the function f_m in de�ned in the �le f_m.sci.

Scilab Session

-->unix('make f_m.o');

-->link('f_m.o','f_m');

linking _f_m_ defined in f_m.o

-->getf('f_m.sci','c')

-->f_m(%pi,1,2)

ans =

2.
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6.6.2 Matrix Example

This is an example of transferring a Maple matrix into Scilab.

Maple Session

> with(linalg):read(`maple2scilab.maple`):

> x:=vector(2):par:=vector(2):

> mat:=matrix(2,2,[x[1]^2+par[1],x[1]*x[2],par[2],x[2]]);

[ 2 ]

[ x[1] + par[1] x[1] x[2] ]

mat := [ ]

[ par[2] x[2] ]

> maple2scilab('mat',mat,[x,par]);

Scilab Session

-->unix('make mat.o');

-->link('mat.o','mat')

linking _mat_ defined in mat.o

-->getf('mat.sci','c')

-->par=[50;60];x=[1;2];

-->mat(x,par)

ans =

! 51. 2. !

! 60. 2. !

Generated code Below is the code (Fortran subroutines and Scilab functions) which is auto-
matically generated by maple2scilab in the two preceding examples.

Fortran routines

c

c SUBROUTINE f_m

c

subroutine f_m(x,a,b,fmat)

doubleprecision x,a,b

implicit doubleprecision (t)

doubleprecision fmat(1,1)
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fmat(1,1) = b+a*sin(x)

end

c

c SUBROUTINE mat

c

subroutine mat(x,par,fmat)

doubleprecision x,par(2)

implicit doubleprecision (t)

doubleprecision fmat(2,2)

t2 = x(1)**2

fmat(2,2) = x(2)

fmat(2,1) = par(2)

fmat(1,2) = x(1)*x(2)

fmat(1,1) = t2+par(1)

end

Scilab functions

function [var]=f_m(x,a,b)

var=call('f_m',x,1,'d',a,2,'d',b,3,'d','out',[1,1],4,'d')

function [var]=fmat(x,par)

var=call('fmat',x,1,'d',par,2,'d','out',[2,2],3,'d')
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