
SCICOS - A Dynamic System Builder and
Simulator

User’s Guide�

R. Nikoukhah S. Steer

Den(s)

Num(s)

Den(s)

Num(s)

Den(z)

Num(z)

Den(z)

Num(z)

Plant

Controller

noise

reference trajectory

generator
sinusoid
generator
sinusoid

generator
random
generator
random

Mux Mux

S/H S/H

demo22

Figure 1: A typical Scicos diagram

1 Introduction

Scicos (Scilab Connected Object Simulator) is a Scilab package for modeling and sim-
ulation of dynamical systems including both continuous and discrete sub-systems. Sci-
cos includes a graphical editor for constructing models by interconnecting blocks (rep-
resenting predefined basic functions or user defined functions).

�Scicos is a Scilab toolbox. This version of Scicos is included in Scilab-2.4. For more information on
Scilab see:http://www-rocq.inria.fr/scilab/

1

times (events)

signal remains constant outside
of activation
time

continuous
activation time

discrete activation

Figure 2: A signal in Scicos and its activation time set.

Associated with each signal, in Scicos, is a set of time indices, called activation
times, on which the signal can evolve. Outside their activation times, Scicos signals
remain constant (see Figure 2). The activation time set is a union of time intervals and
isolated points called events.

Signals in Scicos are generated by blocks driven by activation signals. An activation
signal causes the block to evaluate its output as a function of its input and internal state.
The output signal, which inherits its activation time set from the generating block, can
be used to drive other blocks.

Blocks are activated by activation signals which are received on activation input
ports placed on top of blocks. A block with no input activation port is permanently
active (called time dependent) otherwise it inherits its activation times from the union
of activations times of its input signals.

Ports placed at the bottom of blocks are output activation ports. The outgoing
signals are activation signals generated by the block. For example, theClock block
generates an activation signal composed of a train of regularly spaced events in time.
If this output is connected to the input activation port of a scope block (such as the
MScope block), it specifies at what times the value of the inputs of the scope must be
displayed.

2 Scicos editor

In Scicos, systems are modeled by interconnecting blocks and subsystems (Super blocks);
blocks can be found in various palettes or be defined by user. Scicos has an easy to use
graphical user interface for editing diagrams. To start the editor, in Scilab, typesci-
cos(); . This opens up Scicos’ main window.

2

Construction of Scicos model typically consists of

� opening one or more palettes (usingPalettes button in theEdit menu),

� copying blocks from palettes into Scicos’ main window; this can be done by
selecting thecopy button in theEdit menu, then clicking on the block to be
copied, and finally in the Scicos’ main window, where the block is to be placed.

� connecting the input and output ports of the blocks by selecting first thelink
button in theEdit menu, then clicking on the output port and then on the input
port (or intermediary points before that).

Note that to make a link originate from another link (to split a link), user should first
click on theLink button and then on an existing link, where split is to be placed,
and finally on an input port (or intermediary points before that). The process of link
creation can be stopped and current link deleted by clicking on the right mouse button.

Note also that at least one scope or a “write to file” block should be placed in any
Scicos diagram to visualize or save the result of the simulation. See Scicos demos for
examples.

2.1 Parameter adaptation

Block parameters can be modified by opening the block dialogs. This can be done
using theOpen/set button. Most blocks have dialog menus which can be used to
set or modify block parameters. These parameters can be defined using valid Scilab
expressions. Scilab variables can be used in the definition of these expressions if they
are already defined in the context of diagram. These expressions are memorized sym-
bolically, and then evaluated.

The context of the diagram can be edited by selecting theContext button. The
context is evaluated by theEval button. This is necessary only if the context modifi-
cation includes a change in the value of a variable previously used in the definition of
a block parameter.

2.2 Simulation

A completed diagram can be simulated usingRun in theSimulate menu. Selecting
this button results in a compilation of the diagram (if not already compiled) and sim-
ulation. The simulation can be stopped by clicking on thestop button on top of the
Scicos main window.

A compiled Scicos diagram, saved as a*.cos file, does not need compilation
the next time it is loaded; the saved file contains, the result of the compilation. It
is also possible to extract just the data needed to do simulation, and do the simulation
without having to enter the Scicos environment. This can be done using thescicosim
function.

3

2.3 Other functionalities

The editor provides many other functionalities such as

� saving and loading diagrams in various formats

� zooming and changing the point of view

� changing block aspects and colors

� changing diagram’s background and forground colors

� placing text in the diagram

� printing and exporting Scicos diagrams

� and many other standard GUI functions.

TheHelp button can be used to obtain help on various aspects of Scicos. Selecting
Help and then clicking on a block displays the manual page of the block. Selecting
Help and then selecting another button, displays the manual page of the button.

Finally, an important feature in Scicos is the possibility of creating sub-systems
(Super Blocks). Clearly, it would not be desirable to fit a complex system with hun-
dreds of components in one Scicos diagram. For that, Scicos provides the possibility
of grouping blocks together and defining sub-diagrams called Super Blocks. These
blocks behave like any other block but can contain an unlimited number of blocks, and
even other Super Blocks.

3 Basic Blocks

There are three types of Basic Blocks in Scicos: Regular Basic Blocks, Zero Crossing
Basic Blocks and Synchro Basic Blocks. These blocks have can have two types of
inputs and two types of outputs ports: regular inputs, activation inputs, regular outputs
and activation outputs ports. Regular inputs and outputs are interconnected by regular
links, and activation inputs and outputs, by activation links. Note that activation input
ports are placed on top and activation output ports at the bottom of the blocks.

3.1 Regular Basic Block

Regular Basic Blocks (RBB) can have acontinuous statex and adiscrete statez. If it
does have anx and ifu denotes its regular input, then, when the block is active over an
interval of time,x evolves continuously according to

_x = f(t; x; z; u; p; ne) (1)

wheref is a vector function,p is a vector of constant parameters andne is theactivation
codewhich is an integer designating the port(s) through which the block is activated.
In particular, if activating input ports arei1; i2; : : : ; in, then

ne =

nX

j=1

2ij�1:

4

On the other hand, activated by an event, the statesx andz jump instantaneously
according to the following equations:

x(te) = gc(te; x(t
�

e); z(t
�

e); u(te); p; ne) (2)

z(te) = gd(te; x(t
�

e); z(t
�

e); u(te); p; ne) (3)

wherete denotes the event time. The discrete statez remains constant between any
two successive events soz(t�e) can be interpreted as the previous value ofz.

During activation times, the regular output of the block is defined by

y(t) = h(t; x(t�); z(t�); u(t); p; ne) (4)

and is constant when the block is not active.
Finally, RBB’s can generate activation signals of event type. If it is activated by an

event at timete, the time of each output event is given by

tevo = k(te; z(te); u(te); p; ne) (5)

wheretevo is a vector of time, each entry of which corresponds to one activation output
port. The absence of event corresponds to a time smaller than the current time. Event
generations can also be pre-scheduled. Pre-scheduling of events can be done by setting
the ”initial firing variables of blocks with event output ports.

3.2 Zero Crossing Basic Block

Zero Crossing Basic Block (ZBB) can generate event outputs only if at least one of the
regular inputs crosses zero (changes sign). In such a case, the generation of the event,
and its timing, can depend on the combination of the inputs which have crossed zero
and the signs of the inputs just before the crossing occurs.

A few examples of ZBB’s can be found in theThreshold palette.

3.3 Synchro Basic Block

Synchro Basic Blocks (SBB) generate output activation signals that are synchronized
with their input activation signals. These blocks have a unique activation input port;
they route their input activation signals to one of their activation outputs. The choice
of this output depends on the value of the regular input. Examples are theevent
select block and theIf-then-else block in theBranching palette.

4 Time dependence and inheritance

To avoid explicitly drawing all the activation signals in a Scicos diagram, a feature
called inheritance is provided in Scicos. In particular, if a block has no activation input
port, it inherits its activation signal from its regular input signals. And for blocks which
are active permanently, they can be declared as such (“time dependent”) and they do
not need input activation ports. Note that time dependent blocks do not inherit.

5

5 Block construction

A new block can be constructed as a Super Block (by interconnection of basic blocks)
and compiled. As for a new basic block, it can be defined by a pair of functions:

� anInterfacingfunction for handling the user-interface

� a Computationalfunction for specifying its dynamic behavior.

TheInterfacingfunction is always written as a Scilab function. See Scilab functions in
<SCIDIR>/macros/scicos blocks for examples. TheComputationalfunction
can be written in C or Fortran. See<SCIDIR>/routines/scicos for examples.
But it can also be written in Scilab language. C and Fortran routines dynamically
linked or permanently interfaced with Scilab give the better results as far as simulation
performance is concerned.

TheScifunc , GENERIC, C block andFortran block blocks provide generic
Interfacing functions, very useful for rapid prototyping and testing user-developed
Computationalfunctions.

5.1 Interfacing function

The Interfacing function determines the geometry, color, number of ports and their
sizes, icon, etc..., in addition to the initial states, parameters. This function also handles
the block’s user dialog.

What the interfacing function should do and should return depends on an input flag
job . The syntax is as follows:

5.1.1 Syntax

[x,y,typ]=block(job,arg1,arg2)

Parameters

� job==’plot’: the function draws the block.

– arg1 is the data structure of the block.

– arg2 is not used.

– x,y,typ are not used.

In general, we can usestandard draw function which draws a rectangular
block, and the input and output ports. It also handles the size, icon, and color
aspects of the block.

� job==’getinputs’: the function returns position and type of input ports (regular
or activation).

– arg1 is the data structure of the block.

– arg2 is not used.

6

– x is the vector of x coordinates of input ports.

– y is the vector of y coordinates of input ports.

– typ is the vector of input ports types (1 for regular and 2 for activation).

In general, we can use thestandard input function.

� job==’getoutputs’: returns position and type of output ports (regular and activa-
tion).

– arg1 is the data structure of the block.

– arg2 is not used.

– x is the vector of x coordinates of output ports.

– y is the vector of y coordinates of output ports.

– typ is the vector of output ports types .

In general, we can use thestandard output function.

� job==’getorigin’: returns coordinates of the lower left point of the rectangle con-
taining the block’s silhouette.

– arg1 is the data structure of the block.

– arg2 is not used.

– x is the x coordinate of the lower left point of the block.

– y is the y coordinate of the lower left point of the block.

– typ is not used.

In general, we can use thestandard origin function.

� job==’set’: opens up a dialogue for block parameter acquisition (if any).

– arg1 is the data structure of the block.

– arg2 is not used.

– x is the new data structure of the block.

– y is not used.

– typ is not used.

� job==’define’: initialization of block’s data structure (name of corresponding
Computationalfunction, type, number and sizes of inputs and outputs, etc...).

– arg1, arg2 are not used.

– x is the data structure of the block.

– y is not used.

– typ is not used.

7

5.1.2 Block data-structure definition

Each Scicos block is defined by a Scilab data structure as follows:

list(’Block’,graphics,model,unused,GUI_function)

whereGUI function is a string containing the name of the correspondingInterfac-
ing function andgraphics is the structure containing the graphical data:

graphics=..
list([xo,yo],[l,h],orient,dlg,pin,pout,pcin,pcout,gr_i)

� xo: x coordinate of block origin

� yo: y coordinate of block origin

� l: block’s width

� h: block’s height

� orient: boolean, specifies if block is flipped or not (regular inputs are on the left
or right).

� dlg: vector of character strings, contains block’s symbolic parameters.

� pin: vector,pin(i) is the number of the link connected toi th regular input
port, or 0 if this port is not connected.

� pout: vector,pout(i) is the number of the link connected toi th regular output
port, or 0 if this port is not connected.

� pcin: vector,pcin(i) is the number of the link connected toi th activation
input port, or 0 if this port is not connected.

� pcout: vector,pcout(i) is the number of the link connected toi th activation
output port, or 0 if this port is not connected.

� gr i: character string vector, Scilab instructions used to draw the icon.

The data structure containing simulation information ismodel :

model=list(eqns,#input,#output,#clk_input,#clk_output,..
state,dstate,rpar,ipar,typ,firing,deps,label,unused)

� eqns: list containing two elements. First element is a string containing the name
of theComputationalfunction (fortran, C, or Scilab function). Second element
is an integer specifying the type of theComputationalfunction. The type of a
Computationalfunction specifies essentially its calling sequence; more on that
later.

8

� #input: vector of size equal to the number of block’s regular input ports. Each
entry specifies the size of the corresponding input port. A negative integer stands
for “to be determined by the compiler”. Specifying the same negative integer on
more than one input or output port tells the compiler that these ports have equal
sizes.

� #output: vector of size equal to the number of block’s regular output ports.
Each entry specifies the size of the corresponding output port. Specifying the
same negative integer on more than one input or output port tells the compiler
that these ports have equal sizes.

� #clk input : vector of size equal to the number of activation input ports. All
entries must be equal to1. Scicos does not support vectorized activation links.

� #clk output: vector of size equal to the number of activation output ports. All
entries must be equal to1. Scicos does not support vectorized activation links.

� state: column vector of initial continuous state.

� dstate: column vector of initial discrete state.

� rpar : column vector of real parameters passed on to the correspondingCompu-
tational function.

� ipar : column vector of integer parameters passed on to the correspondingCom-
putationalfunction.

� typ: string. Basic block type:’z’ if ZBB, ’l’ if SBB and anything else for
except’s’ for RBB.

� firing : column vector of initial firing times of size equal to the number of activa-
tion output ports of the block. It includes preprogrammed event firing times (<0
if no firing).

� deps: [udep timedep]

– udep: boolean. True if system has direct feed-through, i.e., at least one of
the outputs depends explicitly on one of the inputs.

– timedep: boolean. True if block is time dependent.

� label: character string, used as block identifier. This field may be set by the
label button inBlock menu.

5.2 Computationalfunction

TheComputationalfunction evaluates outputs, new states, continuous state derivative
and the output events timing vector depending on the type of the block and the way it
is called by the simulator.

9

5.2.1 Behavior

Simulator calls theComputationalfunction for performing different tasks:

� Initialization The simulator calls theComputationalfunction once at the start
for state and output initialization (inputs are not available then). Other tasks such
as file opening, graphical window initialization, etc..., can also be performed at
this point.

� Re-initialization The simulator can call the block a number of times for re-
initialization. This is another opportunity to initialize states and outputs. But
this time, the inputs are available.

� Outputs updateThe simulator calls for the value of the outputs. Thus theCom-
putationalfunction should evaluate (4).

� States updateOne or more events have arrived and the simulator calls theCom-
putationalfunction to update the statesx andz according to (2) and (3).

� State derivative computationThe simulator is in a continuous phase; the solver
requires_x. This means that theComputationalfunction must evaluate (1).

� Output events timing The simulator calls theComputationalfunction about the
timing of its output events. TheComputationalfunction should evaluate (5).

� Ending The simulator calls theComputationalfunction once at the end (useful
for closing files, free allocated memory, etc...).

The simulator uses a flag to specify which task should be performed (see Table 1).

Flag Task
0 State derivative computation
1 Outputs update
2 States update
3 Output events timing
4 Initialization
5 Ending
6 Re-initialization

Table 1: Tasks ofComputationalfunction and their corresponding flags

5.2.2 Types ofComputationalfunctions

In Scicos,Computationalfunctions can be of different types and co-exist in the same
diagram. Currently defined types are listed in Table 2. The type of theComputational
function is stored in the second field ofeqns (see Section 5.1.2).

10

Function type Scilab Fortran C Comments
0 yes yes yes Fixed calling sequence
1 no yes yes Varying calling sequence
2 no no yes Fixed calling sequence
3 yes no no Inputs/outputs are Scilab lists

Table 2: Different types of theComputationalfunctions. Type0 is obsolete.

Computational function: type 0 In blocks of type 0, the simulator constructs a
unique input vector by stacking up all the input vectors, and expects the outputs,
stacked up in a unique vector as well. This type is supported for backward only.

The calling sequence is identical to that ofComputationalfunctions of type 1 with
one regular input and one regular output.

Computational function: type 1 The simplest way of illustrating this type is by
considering an example: for a block with two regular input vectors and four regular
output vectors, theComputationalfunction has the following synopsis.

Fortran case

subroutine myfun(flag,nevprt,t,xd,x,nx,z,nz,tvec,
& ntvec,rpar,nrpar,ipar,nipar,u1,nu1,u2,nu2,
& y1,ny1,y2,ny2,y3,ny3,y4,ny4)

c
double precision t,xd(*),x(*),z(*),tvec(*),rpar(*)
double precision u1(*),u2(*),y1(*),y2(*),y3(*),y4(*)
integer flag,nevprt,nx,nz,ntvec,nrpar,ipar(*)
integer nipar,nu1,nu2,ny1,ny2,ny3,ny4

See Tables 3 for a description of the arguments.

C case Type 1Computationalfunctions can also be written in C language, the same
way. Note that, arguments must be passed as pointers.

The best way to learn how to write these functions is to examine the routines in
the Scilab directorySCIDIR/routines/scicos whereComputationalfunctions
of all Scicos blocks are available. Most of them are fortran type 0 and 1.

Computationalfunction type 2 ThisComputationalfunction type is specific to pro-
gramming in C. The synopsis is:

#include "<SCIDIR>/routines/machine.h"
void selector(flag,nevprt,t,xd,x,nx,z,nz,tvec,ntvec,

rpar,nrpar,ipar,nipar,inptr,insz,nin,outptr,outsz,nout)

integer *flag,*nevprt,*nx,*nz,*ntvec,*nrpar;

11

I/O Args. Description
I flag 0,1,2,3,4,5 or 6, (see Table 1)
I nevprt activation code
I t time
O xdot derivative of the continuous state

I/O x continuous state
I nx size ofx

I/O z discrete state
I nz size ofz
O tvec times of output events (forflag =3)
I ntvec number of activation output ports
I rpar parameter
I nrpar size ofrpar
I ipar parameter
I nipar size ofipar
I ui i th input (regular),i =1,2,: : :
I nui size ofi th input
O yj j th output (regular),j =1,2,: : :
I nyj size ofj th output

Table 3: Arguments ofComputationalfunctions of type 1. I: input, O: output.

integer ipar[],*nipar,insz[],*nin,outsz[],*nout;

double x[],xd[],z[],tvec[],rpar[];
double *inptr[],*outptr[],*t;

See Table 4 for a description of arguments.

Computationalfunction type 3 ThisComputationalfunction type is specific to pro-
gramming in Scilab. The calling sequence is as follow:

[y,x,z,tvec,xd]=test(flag,nevprt,t,x,z,rpar,ipar,u)

See table 5 for a description of arguments.

Example The following is theComputationalfunction associated with a block that
displays in a Scilab window, every time it receives an event, the number of events it
has received up to the current time, and the values of its two inputs.

function [y,x,z,tvec,xd]=test(flag,nevprt,t,x,z,rpar,ipar,u)
y=list();tvec=[];xd=[]
if flag==4 then

z=0
elseif flag==2 then

12

I/O Args. description
I *flag 0,1,2,3,4,5 or 6, (see Table 1)
I *nevprt activation code
I *t time
O xd derivative of the continuous state (flag = 0)

I/O x continuous state
I *nx size ofx

I/O z discrete state
I *nz size ofz
O tvec times of output events (flag =3)
I *ntvec number of activation output ports
I rpar parameter
I *nrpar size ofrpar
I ipar parameter
I *nipar size ofipar
I inptr inptr[i] is pointer to beginning ofi th input
I insz insz[i] is the size of thei th input
I *nin number of input ports
I outptr outptr[j] is pointer to beginning ofj th output
I outsz outsz[j] is the size of thej th output
I *nout number of output ports

Table 4: Arguments ofComputationalfunctions of type 2. I: input, O: output.

z=z+1
write(%io(2),’Number of calls:’+string(z))
[u1,u2]=u(1:2)
write(%io(2),’first input’);disp(u1)
write(%io(2),’second input’);disp(u2)

end

Example The advantage of coding inputs and outputs as lists is that the number of
inputs and outputs need not be specified explicitly. In this example, the output is the
element-wise product of all the input vectors, regardless of the number of inputs.

function [y,x,z,tvec,xd]=elemprod(flag,nevprt,t,x,z,rpar,ipar,u)
tvec=[];xd=[]
y=u(1)
for i=2:length(u)

y=y.*u(i)
end
y=list(y)

13

I/O Args. description
I flag 0,1,2,3,4,5 or 6 (see Table 1)
I nevprt activation code (scalar)
I t time (scalar)
I x continuous state (vector)
I z discrete state (vector)
I rpar parameter (any type of scilabtt variable)
I ipar parameter (vector)
I u u(i) is the vector ofi th regular input (list)
O y y(j) is the vector ofj th regular output (list)
O x new x if flag =2, 4, 5 or 6
O z new z if flag =2, 4, 5 or 6
O xd derivative of x if flag = 0 (vector), [] otherwise
O tvec times of output events ifflag =3 (vector), [] otherwise

Table 5: Arguments ofComputationalfunctions of type 3. I: input, O: output.

6 Conclusion

This document gives only a brief description of Scicos and its usage. More information
can be found in the manual pages of Scicos functions (Scilab help under Scicos library).
Scicos demos provided with Scilab constitute also an interesting source of information.
Often, it is advantageous to start off from and edit a Scicos demo rather than starting
with an empty diagram.

14

Contents

1 Introduction 1

2 Scicos editor 2
2.1 Parameter adaptation . 3
2.2 Simulation . 3
2.3 Other functionalities . .. 4

3 Basic Blocks 4
3.1 Regular Basic Block . 4
3.2 Zero Crossing Basic Block . 5
3.3 Synchro Basic Block . 5

4 Time dependence and inheritance 5

5 Block construction 6
5.1 Interfacingfunction . 6

5.1.1 Syntax . 6
5.1.2 Block data-structure definition 8

5.2 Computationalfunction . 9
5.2.1 Behavior . 10
5.2.2 Types ofComputationalfunctions 10

6 Conclusion 14

15

