
Communication Toolbox

Claude Gomez

Manual Version 1.0 for Scilab 2.4

This is a beta version of the Communication Toolbox. It lacks security problems when
using remote communications (see 2.1). A good error trapping is also under development,
so you can \block" Scilab when doing mistakes in the names of the linked applications.

GeCI is an interactive communication manager created in order to manage remote executions of
programs and allow exchanges of messages between those programs. It o�ers the possibility to exploit
numerous machines on a network, as a virtual computer, by creating a distributed group of independent
softwares.

It has been originally developed in the CalICo Project (LaBRI- Universit�e Bordeaux I, France) by
Nadine Rouillon.

In Scilab, GeCI manages communications between Scilab itself and other applications (included Scilab
itself). In fact, the scilab command is a shell script which at last executes the command:

<Scilab directory>/bin/geci -local <Scilab directory>/bin/scilex

where <Scilab directory> is the main directory of Scilab. We will use <Scilab directory> to
denote this directory in this manual. This means that Scilab is ready to communicate with others
applications. In particular, this is the way Metanet Windows are executed in the Metanet toolbox.

In section 1, we explain how to use the Scilab functions of the Communication Toolbox and in section 2
we describe the way to make an application able to communicate with Scilab.

1 Functions of the Communication Toolbox

There are six functions in the Communication Toolbox to make communications. They are CreateLink,
DestroyLink, ExecAppli, GetMsg, SendMsg and WaitMsg. They are described in the on-line manual. We
are only going here to describe how to use them for exchanging messages between two Scilab programs.
You will �nd in section 2.2 how to communicate between Scilab and other programs.

After executing Scilab, you can execute another Scilab on the same computer from the �rst one and
create a link to it and from it by issuing the commands:

-->h=unix_g("hostname");

-->ExecAppli(SCI+"/bin/scilex",h,"Scilab2")

-->CreateLink("SELF","Scilab2")

-->CreateLink("Scilab2","SELF")

Each application linked to GeCI has a name. Two special names are de�ned, "SELF" always stands
for the name of the Scilab program where you are and "XGeCI" stands for the �rst Scilab program.

Now, another Scilab named Scilab2 appears and you can send a message to it from the �rst Scilab:

-->SendMsg("Hi!","How are you?");

And in Scilab2, you can get it:

1

-->[type,msg,apply] = GetMsg()

apply =

XGeCI

msg =

How are you?

type =

Hi!

You do not have to tell to which application you want to send the message: you send it to all
applications linked to you.

You can also send a message from Scilab2 to �rst Scilab:

-->SendMsg("Answer","Fine and you?");

and you get it in Scilab:

-->[type,msg,apply] = GetMsg()

apply =

Scilab2

msg =

Fine and you?

type =

Answer

You can even open a new Scilab, named Scilab3 for instance, link it to Scilab and/or Scilab2 and
exchange messages between them after having created links. Use the DestroyLink function to destroy a
link.

Note that there is no notion of client and server. The server is the GeCI program and all the
applications which communicate are at the same level. That means that the CreateLink, DestroyLink
and ExecAppli functions can be used in any Scilab instance.

2 Creating applications to communicate with Scilab

To communicate with Scilab, an application must have been prepared for, by including a communication
library in it. The way to do this is described in this section.

Suppose you have a C or fortran program and you want to add in it the functionalities to communicate
using GeCI. For this you need to add new C functions in the code. For instance, you can create a new
C �le which you are going to link with your existing C or fortran program. You also need to link the
program with the following library:

<Scilab directory>/libs/libcomm.a

At the beginning of the C code, you must include the following header �les:

#include "<Scilab directory>/routines/libcomm/libCalCom.h"

#include "<Scilab directory>/routines/libcomm/libCom.h"

Then you de�ne the messages known by the application, usually:

2

static void QuitAppli();

static void EndAppli();

static void ParseMessage();

static void MsgError();

static actions_messages tb_messages[]={

{ID_GeCI,MSG_QUITTER_APPLI,NBP_QUITTER_APPLI,QuitAppli},

{ID_GeCI,MSG_FIN_APPLI,NBP_FIN_APPLI,EndAppli},

{NULL,MSG_DISTRIB_LISTE_ELMNT,NBP_DISTRIB_LISTE_ELMNT,ParseMessage},

{NULL,NULL,0,MsgError}};

All these functions have one argument of type message.
QuitAppli is executed when THIS application terminates.
EndAppli is executed when an application executed by THIS application terminates.
MsgError is executed when there is an error in a message.
ParseMessage is executed to get the received messages. For instance, you can write ParseMessage

the following way:

static char *TheAppli;

static char *TheType;

static char *TheMsg;

static void ParseMessage(message)

Message message;

{

int lappli, ltype, lmsg;

lappli = strlen(message.tableau[0]);

if ((TheAppli = (char *)malloc((unsigned)sizeof(char)*(lappli + 1)))

== NULL) {

return;

}

strcpy(TheAppli,message.tableau[0]);

ltype = strlen(message.tableau[3]);

if ((TheType = (char *)malloc((unsigned)sizeof(char)*(ltype + 1)))

== NULL) {

return;

}

strcpy(TheType,message.tableau[3]);

lmsg = strlen(message.tableau[4]);

if ((TheMsg = (char *)malloc((unsigned)sizeof(char)*(lmsg + 1)))

== NULL) {

return;

}

strcpy(TheMsg,message.tableau[4]);

}

and you get:

� in TheAppli the name of the application which has sent the message

� in TheType the type of the message (an ASCII string)

� in TheMsg the message (an ASCII string)

3

Then you must initialize the communications.
For this, the main function of the application must understand the arguments -pipes <pipe1>

<pipe2> which are automatically given by GeCI when executing it by:

geci -local <my application>

A simple way to do this is to use the find function:

static int find(s,n,t)

char *s;

int n;

char **t;

{

int i;

for (i=0; i<n; i++)

if (!strcmp(s,t[i])) return(i);

return(-1);

}

int main(argc, argv)

unsigned int argc;

char **argv;

{

int igeci;

int p1, p2;

igeci = find("-pipes",argc,argv);

if (igeci == -1) exit(1);

p1 = atoi(argv[igeci+1]); p2 = atoi(argv[igeci+2]);

And you initialize the communications:

init_messages(tb_messages,p1,p2);

Then it is possible to use the functions of GeCI. For this, you have to send messages to GeCI.

� You can execute an application from your program:

envoyer_message_parametres_var(ID_GeCI,

MSG_LANCER_APPLI,

<appli>,

<host>,

<path appli>,

INS_ID_PIPES,

NULL);

where <appli> is the name you give to the application you execute, <host> is the name of the host
where you want to execute the application and <path appli> is the path of the program of the
application on the host. If you want to execute an application locally on the same host, you give
the name of your host. You can also execute the application on a remote host on Internet, see 2.1.

Every application has a name. The name of your program has also a name given automatically.
When you have to use it (to link applications for instance), you can get it by identificateur appli().

� To create a (directed) link from the application named <appli1> to the application named <appli2>:

4

envoyer_message_parametres_var(ID_GeCI,

MSG_CREER_LIAISON,

<appli1>,

<appli2>,

NULL);

Then you are able to send messages from <appli1> to <appli2>.

Note that the two applications must have been executed �rst by the preceding message.

� To destroy a link from <appli1> to <appli2>:

envoyer_message_parametres_var(ID_GeCI,

MSG_DETRUIRE_LIAISON,

<appli1>,

<appli2>,

NULL);

� To send a message to all linked applications:

envoyer_message_parametres_var(ID_GeCI,

MSG_POSTER_LISTE_ELMNT,

<type>,

<msg>,

NULL);

where <type> is a string corresponding to the type of the message and <msg> is the string corre-
sponding to the message.

Note that before being able to exchange messages, applications must have been linked.

� To get a message in an asynchronous way:

scanner_messages();

� To wait for a message from <appli> in a synchronous way:

attendre_reponse(<appli>,

MSG_DISTRIB_LISTE_ELMNT,

NBP_DISTRIB_LISTE_ELMNT);

2.1 Communication between remote hosts

CAUTION: With this beta version of the Communication Toolbox, nothing has been done

for adressing possibly security holes and problems when using the gecid daemon and remote

geci programs. So use them very carefully.

With GeCI you can also have communications between programs on remote hosts.
Suppose you are on host h1, have a local application a1 and you want to execute an application a2

on host h2 and open a communication between a1 and a2.
First, you must have a geci program on both hosts. Second you must have a daemon, called gecid,

on the remote host. The C source code of this daemon is given in the geci directory of Scilab distribution.
You have to give the good path of geci program in the source code of program gecid in variable

GECI.
Then, you �rst start the daemon gecid on host h2. After, you execute application a1, Scilab for

instance, on host h1 and use GeCI functions to execute application a2 on host h2: you have to give the
complete Internet name of host h2 in these functions.

5

If application a2 is another Scilab, do not forget to give the good -display argument to the scilex
command.

In fact the gecid daemon will wait for a socket connection on port 2001 and then start geci on host
h2.

2.2 Examples

You will �nd below two complete C programs as examples.
The �rst program opens Scilab, wait for messages and print them. We call the �le of this program

alpha.c and we suppose that the main directory of Scilab, <Scilab directory> is /usr/local/lib/scilab-2.4.
Compile this program with:

cc -o alpha alpha.c /usr/local/lib/scilab-2.4/libs/libcomm.a

and execute it with (if shell is csh):

setenv SCI /usr/local/lib/scilab-2.4

/usr/local/lib/scilab-2.4/bin/geci -local alpha

Then a new Scilab is executed and you can execute in it commands of the form SendMsg("Hi","How

are you?"). On the console you must see:

Message received from Scilab

type: Hi

message: How are you?

"alpha.c" is given below and in the directory docs/comm of Scilab distribution.

/***/

#include <stdio.h>

#include <string.h>

/* Communications headers */

#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCalCom.h"

#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCom.h"

static void QuitAppli();

static void EndAppli();

static void ParseMessage();

static void MsgError();

/* Known messages */

static actions_messages tb_messages[]={

{ID_GeCI,MSG_QUITTER_APPLI,NBP_QUITTER_APPLI,QuitAppli},

{ID_GeCI,MSG_FIN_APPLI,NBP_FIN_APPLI,EndAppli},

{NULL,MSG_DISTRIB_LISTE_ELMNT,NBP_DISTRIB_LISTE_ELMNT,ParseMessage},

{NULL,NULL,0,MsgError}};

static void QuitAppli(message)

Message message;

{

printf("Quit application\n");

exit(0);

}

6

static void EndAppli(message)

Message message;

{

printf("End application\n");

}

static void MsgError(message)

Message message;

{

printf("Bad received message\n");

}

static char *TheAppli;

static char *TheType;

static char *TheMsg;

/* ParseMessage is executed when a message is received */

static void ParseMessage(message)

Message message;

{

int lappli, ltype, lmsg;

lappli = strlen(message.tableau[0]);

if ((TheAppli = (char *)malloc((unsigned)sizeof(char)*(lappli + 1)))

== NULL) {

return;

}

strcpy(TheAppli,message.tableau[0]);

ltype = strlen(message.tableau[3]);

if ((TheType = (char *)malloc((unsigned)sizeof(char)*(ltype + 1)))

== NULL) {

return;

}

strcpy(TheType,message.tableau[3]);

lmsg = strlen(message.tableau[4]);

if ((TheMsg = (char *)malloc((unsigned)sizeof(char)*(lmsg + 1)))

== NULL) {

return;

}

strcpy(TheMsg,message.tableau[4]);

}

static int find(s,n,t)

char *s;

int n;

char **t;

{

int i;

for (i=0; i<n; i++)

if (!strcmp(s,t[i])) return(i);

return(-1);

}

7

int main(argc, argv)

unsigned int argc;

char **argv;

{

int igeci;

int p1, p2;

char myhost[128];

/* Scilab application to execute */

char *scilex = "/usr/local/lib/scilab-2.4/bin/scilex";

igeci = find("-pipes",argc,argv);

if (igeci == -1) exit(1);

p1 = atoi(argv[igeci+1]); p2 = atoi(argv[igeci+2]);

/* Intialization of communications */

init_messages(tb_messages,p1,p2);

/* Get the name of my computer */

gethostname(myhost,128);

/* Execute Scilab with name "Scilab" on my local host */

envoyer_message_parametres_var(ID_GeCI,

MSG_LANCER_APPLI,

"Scilab",

myhost,

scilex,

INS_ID_PIPES,

NULL);

/* Link THIS application with "Scilab" */

envoyer_message_parametres_var(ID_GeCI,

MSG_CREER_LIAISON,

identificateur_appli(),

"Scilab",NULL);

/* Link "Scilab" with THIS application */

envoyer_message_parametres_var(ID_GeCI,

MSG_CREER_LIAISON,

"Scilab",

identificateur_appli(),NULL);

/* Loop waiting for messages */

while (1) {

scanner_messages();

if (TheType != NULL) {

printf("Message received from %s\n",TheAppli);

printf(" type: %s\n",TheType);

printf(" message: %s\n",TheMsg);

TheAppli = NULL; TheType = NULL; TheMsg = NULL;

}

}

}

8

/***/

The second program has everything to communicate with another application linked to GeCI, Scilab
for instance. It waits for messages and print them. We call the �le of this program beta.c and we
suppose that the main directory of Scilab, <Scilab directory> is /usr/local/lib/scilab-2.4.

Compile this program with:

cc -o beta beta.c /usr/local/lib/scilab-2.4/libs/libcomm.a

Then, being in the directory where beta lies, execute Scilab and issue the following Scilab command:

// get host name of my computer

h=unix_g("hostname")

// execute program beta from Scilab and give it "Beta" as a name

ExecAppli("beta",h,"Beta")

// create a link from Scilab to

CreateLink("SELF","Beta")

// send a message to "Beta"

SendMsg("Hi","How are you?")

On the console you must seen (written by beta):

Message received from Scilab

type: Hi

message: How are you?

"beta.c" is given below and in the directory docs/comm of Scilab distribution.

/***/

#include <stdio.h>

#include <string.h>

/* Communications headers */

#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCalCom.h"

#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCom.h"

static void QuitAppli();

static void EndAppli();

static void ParseMessage();

static void MsgError();

/* Known messages */

static actions_messages tb_messages[]={

{ID_GeCI,MSG_QUITTER_APPLI,NBP_QUITTER_APPLI,QuitAppli},

{ID_GeCI,MSG_FIN_APPLI,NBP_FIN_APPLI,EndAppli},

{NULL,MSG_DISTRIB_LISTE_ELMNT,NBP_DISTRIB_LISTE_ELMNT,ParseMessage},

{NULL,NULL,0,MsgError}};

static void QuitAppli(message)

Message message;

{

printf("Quit application\n");

exit(0);

}

9

static void EndAppli(message)

Message message;

{

printf("End application\n");

}

static void MsgError(message)

Message message;

{

printf("Bad received message\n");

}

static char *TheAppli;

static char *TheType;

static char *TheMsg;

/* ParseMessage is executed when a message is received */

static void ParseMessage(message)

Message message;

{

int lappli, ltype, lmsg;

lappli = strlen(message.tableau[0]);

if ((TheAppli = (char *)malloc((unsigned)sizeof(char)*(lappli + 1)))

== NULL) {

return;

}

strcpy(TheAppli,message.tableau[0]);

ltype = strlen(message.tableau[3]);

if ((TheType = (char *)malloc((unsigned)sizeof(char)*(ltype + 1)))

== NULL) {

return;

}

strcpy(TheType,message.tableau[3]);

lmsg = strlen(message.tableau[4]);

if ((TheMsg = (char *)malloc((unsigned)sizeof(char)*(lmsg + 1)))

== NULL) {

return;

}

strcpy(TheMsg,message.tableau[4]);

}

static int find(s,n,t)

char *s;

int n;

char **t;

{

int i;

for (i=0; i<n; i++)

if (!strcmp(s,t[i])) return(i);

return(-1);

}

10

int main(argc, argv)

unsigned int argc;

char **argv;

{

int igeci;

int p1, p2;

igeci = find("-pipes",argc,argv);

if (igeci == -1) exit(1);

p1 = atoi(argv[igeci+1]); p2 = atoi(argv[igeci+2]);

/* Intialization of communications */

init_messages(tb_messages,p1,p2);

/* Loop waiting for messages */

while (1) {

scanner_messages();

if (TheType != NULL) {

printf("Message received from %s\n",TheAppli);

printf(" type: %s\n",TheType);

printf(" message: %s\n",TheMsg);

TheAppli = NULL; TheType = NULL; TheMsg = NULL;

}

}

}

/***/

11

Contents

1 Functions of the Communication Toolbox 1

2 Creating applications to communicate with Scilab 2
2.1 Communication between remote hosts . 5
2.2 Examples . 6

12

