
Metanet User's Guide and Tutorial

Claude Gomez Maurice Goursat

Manual version 1.1 for Scilab 2.4

Metanet is a toolbox of Scilab for graphs and networks computations. It comes as new Scilab
functions together with a graphical window for displaying and modifying graphs.

You can use the Metanet toolbox in Scilab without using the graphical window window at
all, i.e. without seeing the graphs or the networks you are working with.

1 Representation of graphs

The graphs handled by Metanet are directed or undirected multigraphs (loops are allowed). A
graph is a set of arcs and nodes.

A graph must have at least one arc. We call arc a directed link between two nodes. For
instance the arc (i; j) goes from tail node i to head node j. We call edge the corresponding
undirected link. A minimal way to represent a graph is to give the number of nodes, the list
of the tail nodes and the list of the head nodes. Each node has a number and each arc has
a number. The numbers of nodes are consecutive and the number of arcs are consecutive. In
Scilab, these lists are represented by row vectors. So, if we call tail and head these row vectors,
the arc number i goes from node number tail(i) to node number head(i). Moreover, it is
necessary to give the number of nodes, because isolated nodes (without any arc) can exist. The
size of the vectors tail and head is the number of edges of the graph. This is the standard
representation of graphs in Metanet as it is described in the graph list (see 1.1). There are
functions to compute other representations better suited for some algorithms (see 1.2).

The distinction between edges and arcs is meaningful when we deal with undirected graphs.
This distinction is not needed when we only use the standard functions of Metanet. There is no
distinction between an arc and a directed edge. We will often use indistinctly these two terms.

A new object, the graph list data structure, is de�ned in Scilab to handle graph. It is
described below.

1.1 The graph list data structure

Metanet uses the graph list data structure to represent graphs. With this type of description
(see 1.2), we can have directed or undirected multigraphs and multiple loops are allowed. The
graph list data structure is a typed list. As usual, the �rst element of this object is itself a list
which de�nes its type, 'graph', and all the access functions to the other elements. The graph
list has 33 elements (not counting the �rst one de�ning the type). Only the �rst �ve elements
must have a value in the list, all the others can be given the empty vector [] as a value, and
then a default is used. These �ve required elements are:

name name of the graph (a string)

directed
ag equal to 1 if the graph is directed or equal to 0 if the graph is undirected

1

node number number of nodes

tail row vector of the tail node numbers

head row vector of the head node numbers

A graph must at least have one arc, so tail and head cannot be empty.
For instance, you can de�ne a graph list (see 2.1) by

g=make_graph('min',1,1,[1],[1]);

which is the simplest graph you can create (it is directed, has one node and one loop arc on this
node).

Each element of the list can be accessed by using its name. For instance, if g is a graph list
and you want to get the node number element, you only have to type:
g('node number')

and if you want to change this value to 10, you only have to type:
g('node number')=10

The check graph function checks a graph list to see if there are inconsistencies in its elements.
Checking is not only syntactic (number of elements of the list, compatible sizes of the vectors),
but also semantic in the sense that check graph checks that node number, tail and head

elements of the list can really represent a graph. This checking is automatically made when
calling functions with a graph list as an argument.

You will �nd below the description of all the elements of a graph list. Each element is
described by one or more lines. The �rst lines give the name of the element and its de�nition,
with its Scilab type if needed. The last line gives the default for elements that can have one.
The name of the element is used to access the elements of the list.

name Name of the graph; a string with a maximum of 80 characters (REQUIRED).

directed Flag giving the type of the graph; it is equal to 1 if the graph is directed or equal to
0 is the graph is undirected (REQUIRED).

node number Number of nodes (REQUIRED).

tail Row vector of the tail node numbers (REQUIRED).

head Row vector of the head node numbers (REQUIRED).

node name Row vector of the node names; they MUST be di�erent.

Default is the node numbers as node names.

node type Row vector of the node types; the type is an integer from 0 to 2:

0: plain node

1: sink node

2: source node

This element is mainly used to draw the nodes in the Metanet window. A plain node is
drawn as a circle. A sink or source node is a node where extraneous
ow goes out the node
or goes into the node; it is drawn di�erently (a circle with an outgoing or ingoing arrow).

Default is 0 (plain node).

2

node x Row vector of the x coordinates of the nodes.

Default is computed when showing the graph in the Metanet window (see 3).

node y Row vector of the y coordinates of the nodes.

Default is computed when showing the graph in the Metanet window (see 3).

node color Row vector of the node colors; the color is an integer from 0 to 16:

0: black

1: navyblue

2: blue

3: skyblue

4: aquamarine

5: forestgreen

6: green

7: lightcyan

8: cyan

9: orange

10: red

11: magenta

12: violet

13: yellow

14: gold

15: beige

16: white

Default is 0 (black).

node diam Row vector of the sizes of the node diameters in pixels (a node is drawn as a circle).

Default is the value of element default node diam.

node border Row vector of the sizes of the node borders in pixels.

Default is the value of element default node border.

node font size Row vector of the sizes of the font used to draw the name or the label of the
node; you can choose 8, 10, 12, 14, 18 or 24.

Default is the value of element default font size.

node demand Row vector of the node demands.

The demands of the nodes are used in functions min lcost cflow, min lcost flow1,
min lcost flow2, min qcost flow and supernode.

Default is 0.

edge name Row vector of the edge names; edge names need not be di�erent.

Default is the edge numbers as edge names.

3

edge color Row vector of the edge colors; the color is an integer from 0 to 16 (see node color).

Default is 0 (black).

edge width Row vector of the sizes of the edge widths in pixels.

Default is the value of element default edge width.

edge hi width Row vector of the sizes of the highlighted edge widths in pixels.

Default is the value of element default edge hi width.

edge font size Row vector of the sizes of the font used to draw the name or the label of the
edge; you can choose 8, 10, 12, 14, 18 or 24.

Default is the value of element default font size.

edge length Row vector of the edge lengths.

The lengths of the edges are used in functions graph center, graph diameter, salesman
and shortest path.

Default is 0.

edge cost Row vector of the edge costs.

The costs of the edges are used in functions min lcost cflow, min lcost flow1 and
min lcost flow2.

Default is 0.

edge min cap Row vector of the edge minimum capacities.

The minimum capacities of the edges are used in functions max flow, min lcost cflow,
min lcost flow1, min lcost flow2 and min qcost flow.

Default is 0.

edge max cap Row vector of the edge maximum capacities.

The maximum capacities of the edges are used in functions max cap path, max flow,
min lcost cflow, min lcost flow1, min lcost flow2 and min qcost flow.

Default is 0.

edge q weight Row vector of the edge quadratic weights. It corresponds to w(u) in the value
of the cost on edge u with
ow '(u): 1

2w(u)('(u) � w0(u))
2.

The quadratic weights of the edges are used in function min qcost flow.

Default is 0.

edge q orig Row vector of the edge quadratic origins. It corresponds to w0(u) in the value of
the cost on edge u with
ow '(u): 1

2w(u)('(u) � w0(u))
2.

The quadratic origins of the edges are used in function min qcost flow.

Default is 0.

edge weight Row vector of the edge weights.

The weights of the edges are used in function min weight tree.

Default is 0.

4

default node diam Default size in pixels of the node diameters of the graph.

Default is 20.

default node border Default size in pixels of the node borders of the graph.

Default is 2.

default edge width Default size in pixels of the edge widths of the graph.

Default is 1.

default edge hi width Default size in pixels of the highlighted edge widths of the graph.

Default is 3.

default font size Default size of the font used to draw the names or the labels of nodes and
edges.

Default is 12.

node label Row vector of the node labels.

Node labels are used to draw a string in a node. It can be any string. An empty label can
be given as a blank string ' '.

edge label Row vector of the edge labels.

Edge labels are used to draw a string on an edge. It can be any string. An empty label
can be given as a blank string ' '.

1.2 Various representations of graphs

1.2.1 Names and numbers

First of all, we need to distinguish between the name of a node or the name of an edge and their
internal numbers. The name can be any string. Its is saved in the graph �le (see 2.2). The
internal number is generated automatically when loading a graph. The nodes and the edges
have consecutive internal numbers starting from 1. When using the Scilab functions working on
graphs, all the computations are made with internal numbers.

It is very important to give di�erent names to the nodes because the nodes are distinguished
by their names when they are loaded. This distinction is not important for edges.

Often, the names are taken as the internal numbers. This is the default when no names are
given. In this case, the distinction between a name and a number is not meaningful. Only the
type of the variable is not the same: the name is a string and the number is an integer.

In the following when we talk about the number of a node or the number of an edge, we
mean the internal number.

1.2.2 Tail head

We have seen that the standard representation of a graph used by Metanet is by the means of
two row vectors tail and head: arc number i goes from node number tail(i) to node number
head(i). The size of these vectors is the same and is the number of arcs of the graph.

Moreover the number of nodes must be given. It is greater than or equal to the maximum
integer number in tail and head. If node numbers do not belong to tail and head then there
are isolated nodes.

5

1

4

3

2

4

3

1

2

Figure 1: Small directed graph

If the graph is undirected, it is the same, but tail(i) and head(i) can be exchanged.
This representation is very general and gives directed or undirected multigraphs with possible

loops and isolated nodes.
The standard function to create graphs is make graph (see 2.1). For instance, we can create

a small directed graph with a loop and an isolated node (see �gure 1) by using:
node number = 4, tail = [1,1,2,3], head = [2,3,1,3],
or in Scilab:
g=make graph('foo',1,4,[1 1 2 3],[2 3 1 3]);

1.2.3 Adjacency lists

Another interesting representation often used by algorithms is the adjacency lists representation.
It uses three row vectors, lp, ls and la. If n is the number of nodes and m is the number of
arcs of the graph:
lp is the pointer array (size = n+ 1)
ls is the node array (size = m)
la is the arc array (size = m).
If the graph is undirected, each edge corresponds to two arcs.

With this type of representation, it is easy to know the successors of a node. Node number
i has lp(i+1)-lp(i) successors nodes with numbers from ls(lp(i)) to ls(lp(i+1)-1), the
corresponding arcs are have numbers from la(lp(i)) to la(lp(i+1)-1).

The adjacency lists representation of the graph of �gure 1 is given below:

1

5

3 4 5 5

1

32 1 3

2 43

1 2 3 4

la

ls

lp

The function used to compute the adjacency list representation of a graph is adj lists.

1.2.4 Node-arc matrix

For a directed graph, if n is the number of nodes and m is the number of arcs of the graph, the
node-arc matrix A is a n�m matrix:

6

if A(i; j) = +1, then node i is the tail of arc j
if A(i; j) = �1, then node i is the head of arc i.
If the graph is undirected and m is the number of edges, the node-arc matrix A is also a n�m

matrix and:
if A(i; j) = 1, then node i is an end of edge j.

With this type of representation, it is impossible to have loops.
This matrix is represented in Scilab as a sparse matrix.
For instance, the node-arc matrix corresponding to �gure 1, with loop arc number 4 deleted

is : 0
BBB@

1 1 �1
�1 0 1
0 �1 0
0 0 0

1
CCCA

If the same graph is undirected, the matrix is:

0
BBB@

1 1 1
1 0 1
0 1 0
0 0 0

1
CCCA

The functions used to compute the node-arc matrix of a graph, and to come back to a graph
from the node-arc matrix are graph 2 mat and mat 2 graph.

1.2.5 Node-node matrix

The n� n node-node matrix of the graph is the matrix A where A(i; j) = 1 if there is one arc
from node i to node j. Only 1 to 1 graphs (no more than one arc from one node to another) can
be represented, but loops are allowed. This matrix is also known as the \adjacency matrix".

The same functions used to compute the node-arc matrix (see above) of a graph are used to
compute the node-node matrix: graph 2 mat and mat 2 graph. To specify that we are working
with the node-node matrix, the
ag 'nodenode' must be given as the last argument of these
functions.

For instance, you can �nd below the node-node matrix of the graph corresponding to Figure 1:

0
BBB@

0 1 1 0
1 0 0 0
0 0 1 0
0 0 0 0

1
CCCA

and the node-node matrix for the same undirected graph:

0
BBB@

0 1 1 0
1 0 0 0
1 0 1 0
0 0 0 0

1
CCCA

1.2.6 Chained lists

Another representation used by some algorithms is given by the chained lists. This representa-
tion uses four vectors, fe, che, fn and chn which are described below:

7

�
�
�
�
��
��
��
��

�
�
�
������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�
�
�
�

�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

fn(i) chn(e1) chn(e2)

i

e1=fe(i)

e2=che(e1) e3=che(e2)

Figure 2: Chained lists representation of graphs

e1=fe(i)) is the number of the �rst edge starting from node i
e2=che(e1) is the number of the second edge starting from node i
e3=che(e2) is the number of the third edge starting from node i
and so on until the value is 0
fn(i) is the number of the �rst node reached from node i
chn(i) is the number of the node reached by edge che(i).

All this can be more clearly seen on �gure 2.
You can use the chain struct function to obtain the chained lists representation of a graph

from the adjacency lists representation (see 1.2.3).

2 Managing graphs

We have seen (see 1.1) that a graph in Scilab is represented by a graph list. This list contains
everything needed to de�ne the graph, arcs, nodes, coordinates, colors, attributes, width of the
arcs, etc.

To create, load and save graphs in Scilab, you can use only Scilab functions, handling graph
lists, or you can use the Metanet window. We describe here the �rst way. For the second way,
see 3.

2.1 Creating graphs

The standard function for making a graph list is make graph. The �rst argument is the name
of the graph, the second argument is a
ag which can be 1 (directed graph) or 0 (undirected
graph), the third argument is the number of nodes of the graph, and the last two arguments are
the tail and head vectors of the graph.

We have already seen that the graph named \foo" in �gure 1 can be created by the command:

g=make_graph('foo',1,4,[1 1 2 3],[2 3 1 3]);

The simplest graph we can create in Metanet is:

g=make_graph('min',1,1,[1],[1]);

It is directed, has one node and one loop arc on this node and can be seen in �gure 3.
The following graph shown in �gure 4 is the same as the �rst graph we have created, but it

is undirected:

8

1

1

Figure 3: Smallest directed graph

1

1

3

2

4

4
2

3

Figure 4: Small undirected graph

g=make_graph('ufoo',0,4,[1 1 2 3],[2 3 1 3]);

You can also give 0 as the third argument of make graph (number of nodes). This means that
make graph will compute itself from its last arguments, the tail and head vectors, the number
of nodes of the graph. So, this graph has no isolated node and the nodes names are taken from
the numbers in tail and head vectors. For instance, if you enter

g=make_graph('foo1',1,0,[1 1 4 3],[4 3 1 3]);

the graph (shown in �gure 5) has three nodes with names 1, 3 and 4, no isolated node and four
edges. Note the di�erence with the graph of �gure 1.

The other elements of the graph list (see 1.1) can be entered by using the names of the
elements. For instance, to give graph \foo" coordinates for the nodes, you can enter:

g=make_graph('foo',1,4,[1 1 2 3],[2 3 1 3]);

g('node_x')=[42 108 176 162];

g('node_y')=[36 134 36 93];

Another simple example: if you want to transform the directed graph g into an undirected
graph, you only have to do:

g('directed')=0;

1

4

1

3

3

4

2

Figure 5: Directed graph

9

There is a wizard way to create a graph list \by hands" without using the make graph

function. This can be useful when writing your own Scilab functions. You can use the Scilab
function glist which must have as many arguments as the elements of the graph list (see 1.1).
This way can lead to errors, because the list is somehow long. You can use the check graph

function to check if the graph list is correct.

2.2 Loading and saving graphs

Graphs are saved in ASCII �les, called graph �les. A graph �le has the extension .graph. The
structure of a graph �le is given below:

GRAPH TYPE (0 = UNDIRECTED, 1 = DIRECTED), DEFAULTS (NODE DIAMETER, NODE BORDER,

�rst line continuing ARC WIDTH, HILITED ARC WIDTH, FONTSIZE):

<one line with above values>

NUMBER OF ARCS:

<one line with the number of arcs>

NUMBER OF NODES:

<one line with the number of nodes>

**

DESCRIPTION OF ARCS:

ARC NAME, TAIL NODE NAME, HEAD NODE NAME, COLOR, WIDTH, HIWIDTH, FONTSIZE

COST, MIN CAP, CAP, MAX CAP, LENGTH, Q WEIGHT, Q ORIGIN, WEIGHT

<one blank line>

<two lines for each arc>

**

DESCRIPTION OF NODES:

NODE NAME, POSSIBLE TYPE (1 = SINK, 2 = SOURCE)

X, Y, COLOR, DIAMETER, BORDER, FONTSIZE

DEMAND

<one blank line>

<three lines for each node>

For an undirected graph, ARC is replaced by EDGE. Moreover, the values of NODE DIAMETER, NODE
BORDER, ARC WIDTH, HILITED ARC WIDTH and FONTSIZE for the graph, COLOR, WIDTH, HIWIDTH and
FONTSIZE for the arcs, and POSSIBLE TYPE, COLOR, DIAMETER, BORDER and FONTSIZE for the nodes
can be omitted or equal to 0, then the default is used (see 1.1).

It is possible to create by hands a graph �le and to load it into Scilab, but it is a very
cumbersome job. Programs are given to generate graphs (see 4).

To load a graph into Scilab, use the load graph function. Its argument is the absolute or
relative pathname of the graph �le; if the .graph extension is missing, it is assumed. load graph

returns the corresponding graph list.
For instance, to load the graph foo, which is in the current directory, and put the corre-

sponding graph list in the Scilab variable g, do:
g=load graph('foo'); or g=load graph('foo.graph');.
To load the graph mesh100 given in the Scilab distribution, do:
g=load graph(SCI+'/demos/metanet/mesh100.graph');

To save a graph, use the save graph function. Its �rst argument is the graph list, and
its second argument is the name or the pathname of the graph �le; if the .graph extension is
missing, it is assumed. If the path is the name of a directory, the name of the graph is used as
the name of the �le.

10

For instance, the following command saves the graph g into the graph �le foo.graph:
save graph(g,'foo.graph');

2.3 Plotting graphs

The fastest way to see a graph is to plot it in a Scilab graphical window. We can use the
plot graph function to do this. Note that no interaction is possible with the displayed graph.
If you want to graphically modify the graph, use Metanet windows (see 3).

3 Metanet windows

Metanet windows can be used to see the graphs and the networks. It is a powerful tool to create
and modify graphs. You can have as many Metanet windows as you want at the same time.
Each Metanet window is an Unix process: the communications between Scilab and the Metanet
windows is made by using the communication toolbox called GeCI. NOTE that at the present
time, Metanet windows only work under Unix environment with X Window.

By default, the size of Metanet windows is 1000 pixels by 1000 pixels. If you want to see big
graphs, you have to change this values by using X Window ressources. Put the new values in
the ressources Metanet.drawWidth and Metanet.drawHeight in a standard ressource �le (for
instance .Xdefaults in your home directory). For instance, if you want Metanet windows with
a size of 2000 by 3000 pixels, puts the following lines in the ressource �le:

Metanet.drawWidth: 2000

Metanet.drawHeight: 3000

An important point is that there is no link between the graph displayed in the Metanet
window and the graphs loaded into Scilab. So, when you have created or modi�ed a graph in
the Metanet window, you have to save it as a graph �le (see 2.2) and load it again in Scilab.
Conversely, when you have modi�ed a graph in Scilab, you have to display it again in the Metanet
window by using the save graph function (see 3.2). The philosophy is that computations are
only made in Scilab and the Metanet window is only used to display, create or modify graphs.
So, you can use Metanet toolbox without using Metanet windows.

Another way to see a graph is to plot it in a Scilab graphical window (see 2.3), but there is
no possibility to modify the displayed graph.

3.1 Using the Metanet window

To open a Metanet window, use the metanet or show graph Scilab functions (see 3.2).
The Metanet window comes with three modes. When no graph is loaded, you are in the

Begin mode. When a graph is loaded, you are in the Study mode. When you are creating a new
graph or modifying a graph, you are in the Modify mode.

3.1.1 Begin mode

In this mode, you can load a graph or create a new one. You will �nd below the description of
the items of the menus.

11

Files

New Create a new graph. Prompt for the name of the graph and for its type (directed
or not directed). Then you enter Modify Mode.

Load Load a graph. Show the list of graphs in the default directory. You have to choose
one.

Directory Change the default directory.

Quit Quit Metanet.

3.1.2 Study mode

In this mode, you can load a graph, create a new one or work with an already loaded graph.
With the left button of the mouse, you can highlight an arc or a node.
You will �nd below the description of the items of the menus.

Files

New Create a new graph. Prompt for the name of the graph and for its type (directed
or not directed). Then you enter Modify Mode.

Load Load a graph. Show the list of graphs in the default directory. You have to choose
one.

Directory Change the default directory.

Save As Save the loaded graph with a new name in the default directory.

Quit Quit Metanet.

Graph

Characteristics If there is an highlighted arc or node, print its characteristics, otherwise
print the characteristics of the graph.

Find Arc Prompt for an arc name and highlight it. The viewport of the window is moved
to display the arc if needed.

Find Node Prompt for a node name and highlight it. The viewport of the window is
moved to display the arc if needed.

Graphics Change the scale. The default is 1.

Modify Graph Enter Modify mode.

Use internal numbers as names Use the consecutive internal numbers of arcs and
nodes as names. This is useful when doing computations with Scilab.

Display arc names Display arc names on the arcs.

Display node names Display node names on the nodes.

Redraw Refresh the screen and redraw the graph.

12

3.1.3 Modify mode

In this mode, you can modify and save the graph.
With the left button of the mouse, you can highlight an arc or a node.
With the right button of the mouse, you can modify the graph:

� if you click where there is no arc or node, a new node is created;

� if you click on a node and another node is highlighted, a new arc is created between the
two nodes;

� if you click on a node and drag the mouse, the node is moved.

You will �nd below the description of the items of the menus.

Files

Directory Change the default directory.

Save Save the modi�ed graph in the default directory. All the arcs and nodes must have
names.

Save As Save the modi�ed graph with a new name in the default directory. All the arcs
and nodes must have names.

Quit Exit Modify Mode. If the graph has been modi�ed, it must be saved �rst.

Graph

Characteristics If there is an highlighted arc or node, print its characteristics, otherwise
print the characteristics of the graph.

Find Arc Prompt for an arc name and highlight it. The viewport of the window is moved
to display the arc if needed.

Find Node Prompt for a node name and highlight it. The viewport of the window is
moved to display the arc if needed.

Graphics Change the scale. The default is 1.

Use internal numbers as names Use the consecutive internal numbers of arcs and
nodes as names. This is useful when doing computations with Scilab.

Display arc names Display arc names on the arcs.

Display node names Display node names on the nodes.

Modify

Attributes Display the attributes of the highlighted arc or node. Then, they can be
changed.

Delete Delete the highlighted arc or node. NOTE: there is no undelete.

Name Name the highlighted arc or node.

Color Give a color to the highlighted arc or node.

Create Loop Create a loop arc on the highlighted node.

Create Sink Transform the highlighted node into a sink.

Create Source Transform the highlighted node into a source.

13

Remove Sink/Source Transform the highlighted source or sink node into a plain node.
It has no e�ect if the highlighted node is neither a source nor a sink.

Automatic Name Give the consecutive internal arc and node numbers as the names of
arcs and nodes. This can be useful for a new graph. NOTE that if some arcs and
nodes already have names, they are replaced by the corresponding internal numbers.

Default Values Change some default values:

� the default size of the font

� the default diameter of the nodes

� the default width of the border of the nodes

� the default width of the arcs

� the default width of the highlighted arcs

Redraw Refresh the screen and redraw the graph.

3.2 Using the Metanet window from Scilab

The standard way of using the Metanet window is from Scilab. Indeed, the Metanet window is
opened only when needed as a new process.

Many Metanet windows can be opened at the same time. Each Metanet window has a
number (integer starting from 1). One of these windows is the current Metanet window .

The metanet function opens a new Metanet window and returns its number. A path can
be given as an optional argument: it is the directory where graph �les are searched; by default,
graph �les are searched in the working directory. The metanet function is mainly used when we
want to create a new graph.

We describe below the Scilab functions used in conjunction with the Metanet window.

3.2.1 Showing a graph

The �rst thing we would like to do is to see the graph we are working with: use the show graph

function.
show graph(g) displays the graph g in the current Metanet window. If there is no current

Metanet window, a new Metanet window is created and it becomes the current Metanet window.
If there is already a graph displayed in the current Metanet window, the new graph is displayed
instead. The number of the current Metanet window, where the graph is displayed, is returned
by show graph.

Two optional arguments can be given to show graph(g) after the graph list. If an optional
argument is equal to the string 'new', a new Metanet window is created. If an optional argument
is a positive number, it is the value of the scale factor when drawing the graph (see 3.1).

For instance show graph(g,'new',2) displays the graph g in a new Metanet window with
the scale factor equal to 2.

3.2.2 Showing arcs and nodes

Another very useful thing to do is to distinguish a set of nodes and/or a set of arcs in the displayed
graph. This is done by highlighting nodes and/or arcs: use the show arcs and show nodes

functions.
The arguments of the show arcs and show nodes functions are respectively a row vector

of arc numbers (or edge numbers if the graph is undirected) or a row vector of node numbers.

14

These sets of arcs and nodes are highlighted in the current Metanet window. Note that the corre-
sponding graph must be displayed in this window, otherwise the numbers might not correspond
to arcs or nodes numbers (see 3.2.3 for changing the current Metanet window).

By default, using one of these functions switch o� any preceeding highlighting. If you want
to keep preceeding highlighting, use the optional argument 'sup'.

For instance, the following commands displays the graph g and highlights 3 arcs and 2 nodes:

show_graph(g)

show_arcs([1 10 3]); show_nodes([2 7],'sup')

Note that another way to distinguish arcs and nodes in a displayed graph is to give them
colors. For that you have to use the elements edge color and node color of the graph list
(see 1.1). But you have to modify the graph list of the graph and use show graph again to
display the graph with the new colors.

3.2.3 Managing Metanet windows

The netwindow function is used to change the current Metanet window. For instance netwindow(2)
chooses Metanet window number 2 as the current Metanet window.

The netwindows function returns a list. Its �rst element is the row vector of all the Metanet
windows numbers and the second element is the number of the current Metanet window. This
number is equal to 0 if no current Metanet window exists.

In the following example, there are two Metanet windows with numbers 1 and 3 and the
Metanet window number 3 is the current Metanet window.

-->netwindows()

ans =

ans(1)

! 1. 3. !

ans(2)

3.

3.2.4 Synchronism

By default Metanet windows work with Scilab in asynchronous mode, i.e. Scilab proceeds with-
out waiting for graphics commands sent to Metanet windows to terminate. This mode is the
most eÆcient. But when running a lots of graphics commands, problems can arise. For instance,
you might highlight a set of nodes in a bad Metanet window because the good one has not yet
appeared! So it is possible to use a synchronous mode. Then Scilab waits until the functions
dealing with the Metanet windows have terminated.

The metanet sync function is used to change the mode: metanet sync(0) changes to asyn-
chronous mode (default), metanet sync(1) changes to synchronous mode, and metanet sync()

returns the current mode (0 = asynchronous, 1 = synchronous).

4 Generating graphs and networks

When working with graphs and particularly with networks, it is very useful to generate them
automatically.

The function gen net can be used in Metanet to generate networks. It uses a triangulation
method for generating a planar connected graph and then uses the information of the user to
give arcs and nodes good values of costs and capacities.

15

5 Computations on graphs and networks

Most functions of the Metanet toolbox are used to make computations on graphs and networks.
We can distinguish four classes of such functions and we will describe them brie
y. For more
information, see the on line help.

5.1 Graph manipulations and transformations

You can use these functions to get information about graphs or to modify existing graphs.

add edge adds an edge or an arc between two nodes

add node adds a disconnected node to a graph

arc graph graph with nodes corresponding to arcs

arc number number of arcs of a graph

contract edge contracts edges between two nodes

delete arcs deletes all the arcs or edges between a set of nodes

delete nodes deletes nodes

edge number number of edges of a graph

graph 2 mat node-arc or node-node matrix of a graph

graph simp converts a graph to a simple undirected graph

graph sum sum of two graphs

graph union union of two graphs

line graph graph with nodes corresponding to edges

mat 2 graph graph from node-arc or node-node matrix

node number number of nodes of a graph

nodes 2 path path from a set of nodes

path 2 nodes set of nodes from a path

split edge splits an edge by inserting a node

subgraph subgraph of a graph

supernode replaces a group of nodes with a single node

16

5.2 Graph computations

These functions are used to make standard computations on graphs.

articul �nds one or more articulation points

best match best matching of a graph

circuit �nds a circuit or the rank function in a directed graph

con nodes set of nodes of a connected component

connex connected components

cycle basis basis of cycle of a simple undirected graph

�nd path �nds a path between two nodes

girth girth of a directed graph

graph center center of a graph

graph complement complement of a graph

graph diameter diameter of a graph

graph power kth power of a directed 1-graph

hamilton hamiltonian circuit of a graph

is connex connectivity test

max clique maximum clique of a graph

min weight tree minimum weight spanning tree

neighbors nodes connected to a node

nodes degrees degrees of the nodes of a graph

perfect match min-cost perfect matching

predecessors tail nodes of incoming arcs of a node

shortest path shortest path

strong con nodes set of nodes of a strong connected component

strong connex strong connected components

successors head nodes of outgoing arcs of a node

trans closure transitive closure

17

5.3 Network computations

These functions make computations on networks. This means that the graph has capacities
and/or costs values on the edges.

max cap path maximum capacity path

max
ow maximum
ow between two nodes

min lcost c
ow minimum linear cost constrained
ow

min lcost
ow1 minimum linear cost
ow

min lcost
ow2 minimum linear cost
ow

min qcost
ow minimum quadratic cost
ow

pipe network pipe network problem

5.4 Other computations

These functions do not make computations directly on graphs and networks, but they have
strong links with them.

bandwr bandwidth reduction for a sparse matrix

convex hull convex hull of a set of points in the plane

knapsack solves a 0-1 multiple knapsack problem

mesh2d triangulation of n points in the plane

qassign solves a quadratic assignment problem

salesman solves the travelling salesman problem

18

Contents

1 Representation of graphs 1
1.1 The graph list data structure . 1
1.2 Various representations of graphs . 5

1.2.1 Names and numbers . 5
1.2.2 Tail head . 5
1.2.3 Adjacency lists . 6
1.2.4 Node-arc matrix . 6
1.2.5 Node-node matrix . 7
1.2.6 Chained lists . 7

2 Managing graphs 8
2.1 Creating graphs . 8
2.2 Loading and saving graphs . 10
2.3 Plotting graphs . 11

3 Metanet windows 11
3.1 Using the Metanet window . 11

3.1.1 Begin mode . 11
3.1.2 Study mode . 12
3.1.3 Modify mode . 13

3.2 Using the Metanet window from Scilab . 14
3.2.1 Showing a graph . 14
3.2.2 Showing arcs and nodes . 14
3.2.3 Managing Metanet windows . 15
3.2.4 Synchronism . 15

4 Generating graphs and networks 15

5 Computations on graphs and networks 16
5.1 Graph manipulations and transformations . 16
5.2 Graph computations . 17
5.3 Network computations . 18
5.4 Other computations . 18

List of Figures

1 Small directed graph . 6
2 Chained lists representation of graphs . 8
3 Smallest directed graph . 9
4 Small undirected graph . 9
5 Directed graph . 9

19

Index

adjacency lists, 6
arc, 1

chained lists, 7
current Metanet window, 14, 15

directed edge, 1

edge, 1

graph, 1
graph �le, 10

internal number, 5

Metanet window, 11, 14

node
head, 1
isolated, 1
tail, 1

node-arc matrix, 6
node-node matrix, 7

synchronous mode, 15

20

