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Abstract: Graph Neural Networks (GNNs) have received wide acclaim in recent times due to their
performance on inference tasks for unstructured data. Typically, GNNs operate by exploiting local
structural information in graphs and disregarding their global structure. This is influenced by
assumptions of homophily and unbiased class distributions. As a result, this could impede model
performance on noisy real-world graphs such as spatial graphs where these assumptions may not be
sufficiently held. In this article, we study the problem of graph learning on spatial graphs. Particularly,
we focus on transductive learning methods for the imbalanced case. Given the nature of these graphs,
we hypothesize that taking the global structure of the graph into account when aggregating local
information would be beneficial especially with respect to generalisability. Thus, we propose a novel
approach to training GNNs for these type of graphs. We achieve this through a sampling technique:
Structure-Aware Sampling (SAS), which leverages the intra-class and global-geodesic distances between
nodes. We model the problem as a node classification one for street networks with high variance
between class sizes. We evaluate our approach using large real-world graphs against state-of-the-art
methods. In the majority of cases, our approach outperforms traditional methods by up to a mean
F1-score of 20%.
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1. Introduction

Learning on unstructured data is a crucial and interesting problem [1] that is relevant to many tasks
with a spatial nature such as route planning, vehicular demand prediction, understanding disease
spread (epidemiology), semantic enrichment of spatial networks, and autonomous robotics [2–8].
These tasks could be modelled using graphs. Traditional neural learning approaches such as
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been
successfully applied to solving challenging vision and machine translation problems among many
others [9,10]. However, they are designed for regular grids or euclidean structures. Hence, a key
motivation for Graph Neural Networks (GNNs) is the need for models that can learn on irregular
structures such as graphs. In this regard, GNNs can encode the neighbourhood relational constraints
(relational inductive bias) between graph entities such as nodes or edges during learning [1]. Generally,
GNNs work by exploiting local graph information, which is achieved either through message-passing
or aggregating information from neighbours using an embedding [11,12]. Local here refers to the
neighbourhood of a graph node. For example, in a street network where street segments are nodes,
the locality of a street segment is the set of streets that have a connection to that street. In this paper,
we restrict the locality to one-hop neighbours, i.e., a direct connection. The exploitation of local
graph information is typically implemented at the cost of disregarding the global graph structure.
Granted, this approach is largely influenced by structural assumptions about the graphs such as
homophily and unbiased class distributions [11,12]. Consequently, this poses two possible limitations.
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Firstly, model capacity could be impacted by the disregard for the global graph structure. Secondly,
GNNs could fail to generalise well on noisy real-world graphs such as spatial graphs where these
assumptions may not be sufficiently held.

In this article, we consider street networks as spatial networks. Generally, graphs are deemed
unstructured in the sense that topological features such as node degree are unbounded. However, this is
not necessarily the case for street networks as there can only be a certain number of streets adjacent
to one street. In addition, street networks are less dense than traditional networks. For example,
the average degree of street networks in Los Angeles, Rome, and Vancouver are 4.47, 4.13, and 4.98
respectively. In comparison, a citation network, a social network and protein-protein interaction (PPI)
graphs have an average degree of 9.15, 492, and 28.8 respectively [13]. Furthermore, street networks
exhibit volatile homophily [14]. This phenomenon can be better understood through the concept
of spatial polycentricity [15,16]. Using the distribution of street types across a city as an example,
spatial polycentricity suggests that the street network of a city would not necessarily have the street
classes clustered in sub-structures, hereby contradicting the general definition of homophily. In the
same vein, street networks exhibit high class imbalance, with differences between two classes being as
high as three orders of magnitude [7]

GNNs can be susceptible to overfitting and tend to be unpredictable when applied to real-world
graphs [17,18]. This limitation is amplified when we consider the already discussed conflict between
implementational assumptions of GNNs and the characteristics of street networks, especially in light
of the extremely high variance between class distributions that exist in many spatial networks [7].
Thus, in this article, we study GNNs for node classification on street networks. Specifically, we seek
to investigate the relationship between two pertinent characteristics of spatial networks to GNNs.
These characteristics are a global graph structure and biased class distributions. Consequently, we formulate
the following questions:

1. How well do vanilla GNNs generalise on imbalanced spatial graphs?
2. Can the performance of GNNs be improved by encoding knowledge about the global structure

of the spatial networks?
3. Can the generalisation capacity of GNNs be improved for imbalanced spatial graphs when global

structure is accounted for?

These questions are addressed in Section 7. We design our problem as a multi-class node classification
one for graphs that are highly imbalanced. Specifically, we focus on the open research problem
of enriching the semantics of spatial networks [7,8]. In this regard, we propose a new sampling
approach: Structure-Aware Sampling (SAS), which encodes the global graph structure in the model by
leveraging the intra-class and global-geodesic distances between nodes. We develop a neural framework
using this sampling technique to train a model for spatial graphs. We evaluate our proposal against
state-of-the-art methods on large real-world spatial graphs. Our results show a clear improvement
in the majority of cases, with as much as a 20% F1-score improvement on average over traditional
methods. Our approach is summarised in Figure 1.

We summarise our contributions succinctly:

• We show that vanilla GNNs fail to generalise sufficiently for imbalanced spatial graphs;
• We propose a new sampling technique (SAS) for training GNNs for spatial networks,

which significantly improves model capacity;
• We demonstrate that encoding graph structure (via our sampling technique) to train GNNs

improves the generalisability of models by an average F1-score of 20%, even with class imbalance.

The remainder of this article is organised as follows: In Section 2, we describe related themes
and approaches. Preliminaries are defined and the problem formulated in Section 3. We describe our
approach in Section 4 and experimental methodology in Section 5. We present and discuss our results
in Section 6. We summarise our conclusions in Section 7.
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Figure 1. A description of our proposed methodology for the transductive learning case. We perform
node sampling using the global structure of the graph. The input to the Graph Neural Network (GNN)
is a partially labelled input graph. The global graph structure and node attributes are used to train our
network. The output graph is fully labelled, where the colours of the node denote class membership.

2. Related Work

Our work in this article spans two broad research areas: Graph Neural Networks (GNNs) and
semantic enrichment of spatial networks. GNN approaches can be described by the nature of the
problems they solve, such as node classification, link prediction, or graph classification. Our scope in
this article is limited to node classification and we review relevant works.

2.1. Graph Learning Approaches

Neural approaches for graphs aim to learn a representation for a node using a defined locality.
This premise is inspired both by the success of traditional neural approaches and a need for their
extension to unstructured domains such as graphs [1]. Broadly, GNNs can be grouped into: Spectral
and spatial approaches. Spectral GNNs utilise the idea of convolutions [9] in the fourier domain
through operations on the graph laplacian matrix [11,19–21]. These operations are computationally
expensive and raise practical issues with scalability [11]. On the other hand, spatial approaches
compute representations using an aggregation of neighbourhood features [12,13]. Attention-based
methods are a variant of GNNs that rank the importance of information collected from neighbours of
a node through the computation of an attentional value [12]. They have out-performed state-of-the-art
methods and shown robustness on noisy real-world graphs [12,22]. We use an attention-based,
spatial GNN approach in this article which is described in Section 4.

The literature of GNNs for spatial networks is still developing and there are currently very few
relevant works. In [14], the authors propose a network that learns by embedding the between-edge
and edge attributes of spatial networks. They apply this to tasks such as driving speed prediction and
speed limit classification. However, they regard the spatial network as directed while we embed the
directedness of the network in its attributes. Furthermore, we use a richer set of attributes for each
node. The work done in [23] proposes a spectral-based GNN for traffic forecasting. Their network
leverages the spatial-temporal dependency between entities during training. Their implementation
focuses on the temporal aspects of these networks and is not directly comparable to our scope in this
article. To the best of our knowledge, our article is the first that attempts to improve the robustness of
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GNNs on attributed spatial networks for node classification, specifically with consideration for their
biased, multi-class nature.

2.2. Semantic Enrichment of Spatial Networks

The use of machine learning to enrich the semantics of spatial graphs is not new. A noteworthy
focus of this research endeavour has been in the inference of map data. We adapt the definition of
semantics from [6] as the descriptive details about spatial objects, e.g., the class of streets (motorway and
secondary streets) and the use of buildings (residential and commercial buildings). In [5], they attempt
to predict the semantics of streets on OpenStreetMap using their geometry. In [24], they propose weakly-
and semi-supervised segmentation models for building maps. In [6], they propose transferable models
for enriching map semantics while [7] exploits the use of contextual information to predict the semantics
of streets on OpenStreetMap. However, a unifying characteristic of these approaches is their disregard
for the relational dependence between entities [1,5,6,25–28]. GNNs present an opportunity to bridge
this gap. We recognise the recent work done in [8] where the authors demonstrate a hybrid method
consisting of a CNN and GNN for predicting the semantics of map data. Nonetheless, their scope
is limited to only two street classes. This disregards the problem of biased classes in multi-class
spatial graphs, which is more representative of real-world scenarios. Our work addresses this by
considering nine street classes and proposes a solution for training GNNs to enrich the semantics of
spatial networks when the class sizes are highly biased.

3. Preliminaries

3.1. Notations

We summarise the notations used in this article in Table 1 with their definitions.

Table 1. Table of notations used and their definitions.

Notation Definition

G = (V , E) An undirected spatial graph
V set of nodes in graph
E set of edges in graph
N |V| number of nodes in G
H set of attributes for nodes of G
Y set of class labels for nodes in G
I(υ) importance of a node
LeakyReLU The Leaky ReLU activation function
F (·) Learnt function
Ni Neighbourhood of a node υi

3.2. Problem Formulation

Let G = (V , E) represent a homogeneous, unweighted, undirected, connected, multi-class,
attributed spatial graph of size N = |V| with nodes υi ∈ V and edges (υi, υj) ∈ E . The attributes of
the nodes in G is denoted by H = {~h1, . . . ,~hN} ∈ RN×r, which holds an r−dimensional real vector
representation of the attributes ∀ υ ∈ V . The class labels of V is given by Y = {y1, . . . , yc} ∈ Rc,
where c is the number of class labels that exist in G. We consider nine classes in this article. Our goal is
to build a function F (·) that is given a graph G and a subset of V with its mapped attributes from H,
transductively learning the mapping between V and Y .

3.3. Graph Neural Networks

A Graph Neural Network (GNN) is a neural network that learns directly on the graph
structure. This paradigm achieves this by leveraging local information within the neighbourhood
of a node [9]. This local information is represented either using message passing or neighbourhood
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aggregation [11,12,29]. The general form of a GNN is a neural network that takes a graph G = (V , E)
as input and a real-valued set of attributes H = {~h1, . . . ,~hN} ∈ RN×r. In this instance, we assume H is
mapped to the nodes of G but could also be mapped to edges, depending on the case. The attributes
are used by the neural network to create a representation for the nodes that leverages information in
the local neighbourhood of a node Ni. Our implementation performs neighbourhood aggregation
of features for node υi. Then, the GNN computes attention values for the aggregated information
from the neighbours. This way, it is able to quantify which neighbour-features to emphasise or
not. An activation function is applied to the combination of these values and their features and is
passed to the next layer in the network. Hence, the representation of every node is a function of
its neighbourhood. The final layer of GNNs will consist of an activation function that acts on the
representations passed from the previous layer to compute the class probabilities. In this article, we use
the softmax activation function [30], which is suitable for our multi-class classification problem.

4. The Proposed Model

In this article, we propose a method called SAS-GAT: Structure-Aware Sampling-Graph Attention
Networks. We use this network to train a model for node classification on street networks, where the
nodes denotes the street segments and the model learns a function to predict their class. We describe
the components of the proposed architecture.

4.1. Structure-Aware Sampling (SAS)

The first component of our architecture is a sampling process that is designed to improve the
generalisation power of the network. We propose to encode knowledge about the graph structure in
our neural network by sampling the most important nodes for training. Given the multi-class nature
of the graphs in our scope, we address this by leveraging the intra-class and global-geodesic distances of
nodes in the graph. We refer to class here as the attribute label possessed by a node in a graph. In this
article, the labels are the street types. It has been established that the influence or importance of a node
can be deduced from its position in the graphs [31]. Similarly, different network measures can be used
to quantify either the local or global importance of a node. Thus, we express the importance of a node
in a multi-class spatial graph as follows:

I(υ) =
1
2 ∑(C,B). (1)

Here, I(υ) denotes the importance of node υ, C represents the intra-class distances, and B
represents the global-geodesic distances. The key idea behind Equation (1) is to sample nodes that are
not only influential within their class but are also important in the global structure of the graphs.
It follows then that we adapt the closeness and betweenness centrality measures to model C and B
respectively [32]. We extend the general form of the closeness centrality as defined in Equation (2) to
consider class distributions. Hence, the closeness centrality of a node υ∗i , where ∗ denotes the class
given by:

C(υ∗i ) =
N∗

∑υ∗j ∈V∗ d(υ∗i , υ∗j )
(2)

where d(·) is the distance between two nodes, N, V as defined in Section 3.1. In this article, we consider
the V∗ of any class to be the largest set of connected nodes of that class. The betweenness centrality is
defined thus:

B(υi) = ∑
m,n∈V

γ(m, n|υi)

γ(m, n)
(3)

γ(m, n) is the number of m, n-shortest paths in V , and γ(m, n|υi) is the proportion of such shortest
paths that go through υi. Given the complexity of this measure, especially for large graphs, we adapt
the approximation technique described in [33]. In this article, we implement this by using only 25% of
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the graph nodes. We present an intuitive visual description of both measures as it relates to multi-class
graph structures in Figure 2. Finally, we normalise the values from Equations (2) and (3) before
computing Equation (1).

We describe the computational implementation of Equation (1) in Algorithm 1. This algorithm
takes as input the graph structure G, the set of training nodes VT , the class labels for nodes Y ,
and the set of per-class threshold values K, C(·) and B(·) are as defined in Equations (2) and (3). B and
C are normalised by setting their values in the range (0, 1). This algorithm returns a set of top-k nodes
based on the preset thresholds (K) for each class.

1 2

Figure 2. A depiction of node influence in multi-class graphs. The colours denote membership of a
node class. (1) The green node will have a high closeness centrality among the group of nodes. In this
case, we assume they all belong to the same class. (2) The green node will possess a high betweenness
centrality between the two class clusters. Here, the green node could belong to either node clusters.

Algorithm 1: Sample Nodes using SAS
Input :G = (V , E), VT , Y , K, C(·), B(·)
Output :V′T ;
Initialize B, C, I, V′T ;
for y ∈ Y do

x ← Vy
T

C← C(x) . Equation (2)
end
C← sort(C)
B← sort(B (X)) . Equation (3)
B,C← intersection(B,C)

B,C← normalize(B,C)

I← ComputeImportance(B ·C) . Equation (1)
for y ∈ Y do

V′T ← Map(Vy
T , Iy)

Ky

end
Return V′T

4.2. Aggregating Node-Level Neighbourhood Information with Attention

Having sampled the most important nodes via SAS, we proceed to exploit local node information.
In this regard, we build upon the node attentional approach for graphs (GAT: Graph Attention
Networks) described in [12] to develop our network. This approach allows for the computation
of similarities between nodes using their attributes. However, this approach is naive about global
graph structure which could be detrimental to model capacity. Therefore, in our neural architecture,
we extend it by encoding global graph information as described in Section 4.1. Now, we describe the
use of node level attributes to implement an attention mechanism.

Given a set of node features H = {~h1, . . . ,~hN} from a graph network G, where~hi ∈ Rr and r is
the number of features in the nodes υ ∈ V , we set H to the attributes that correspond to the nodes
returned by Algorithm 1. This can be thought of as a subset of all node features. We implement an
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attention mechanism a by firstly performing a linear transformation W~hi on the features of a node~hi.
If yi = W~hi, then we can compute the attention value for any two pairs of nodes υi, υj that share an
edge as:

eij = a(yi, yj). (4)

The attention values between any pair of nodes is normalised using the softmax function, thus:

αij = softmaxj(eij) =
exp

(
LeakyReLU

(
~aT

(
yi ‖ yj

)))
∑k∈Ni

exp
(

LeakyReLU
(
~aT

(
yi ‖ yk

))) . (5)

Here, ~a is a weight vector, ·T is the transpose, ‖ is the concatenation operator, and Ni is the
neighbourhood of a node υi. For the purpose of this article, we only consider direct neighbours of a
node i.e one-hop. Next, the normalised attention values are fed to the next layer as a linear combination
of the node features they represent, through a non-linear function σ (we use the softmax in this article)
expressed thus:

~h′i = σ

(
∑

j∈N〉
αij · yj

)
. (6)

Furthermore, Equation (6) can be extended using multiple independent attention mechanisms
as follows:

~h′i = ‖K
k=1σ

(
∑

j∈N〉
αk

ij · yk
j

)
. (7)

Here, K denotes the number of independent attention mechanisms, ‖ represents the concatenation
operation, αk

ij denote the normalised attention values returned by the k−th attention mechanism,

and yk
j is the corresponding weight matrix. We set K to eight attention mechanisms in our network.

This value of K produced the most stable results in our preliminary investigations. Nonetheless,
we show results for other number of attention mechanisms in Section 6. Using the multiple attention
mechanism, we do not concatenate the transformations of each mechanism at the final layer. Rather,
we compute their average before applying the non-linear softmax function (σ) as in [12]. See Figure 3
for a description of our neural framework.

STRUCTURE-AWARE
SAMPLING ACTIVATION FUNCTION

CLASS LABELS

FULLY-CONNECTED FEED
FORWARD NETWORK 

(16 HIDDEN UNITS)

.

.
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.
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.
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B CLASS PROBABILITIES

A

Figure 3. Description of our method. (A) The street network nodes are attributed using their contextual
information. (B) The proposed sampling technique is used to select nodes based on their position in the
graph. Nodes with bold lines are the sampled ones and nodes with dotted lines are their neighbours.
The weight of the red lines indicates the strength of attention given to the information from a node.
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5. Experiments

We carry out experiments, evaluating the proposed model against state-of-the-art methods.
This section is a description of the experimental design employed in this article.

5.1. Data Description

The data used in our experiments were collected from OpenStreetMap (OSM). We use the street
networks of three cities—Los Angeles , Rome, and Vancouver collected via the OSMNx API [34].
These cities span three countries and two continents, representing a diverse array of street patterns
which formed the basis for their selection [6,7,35,36]. The original networks encoded the streets using
an edge−edge representation, with each edge denoting a street. We transform this representation to its
node−node equivalent using the line graph algorithm [37]. Essentially, this means that N = |V| = |E |.
Where, N and |V| is the number of nodes in the transformed node−node representation and |E | is
the number of edges in the original network. Each street network is a topological graph where the
nodes represent street entities and the edges between nodes represent an intersection between streets.
Note that the graph representation of each network is an undirected multigraph. Information about
the directedness of each street, i.e., whether it is one-way or not is encoded into the graph using the node
attributes. We attribute the nodes with a rich array of contextual information using the fixed multiple
buffer approach described in [7]. We describe this approach below in Section 5.2. We consider nine
road labels: Residential, secondary, primary, trunk, primary link, tertiary, unclassified, motorway link,
and motorway. It is important to mention that all the graphs were connected.

We show the class distributions of the graphs in Figure 4. Here, we can see the high variability
between classes in each graph. Recall that this is a key motivation of our proposal. In Table 2,
we present summary statistics of the datasets. As mentioned in Section 1, we see that the average
degree is ≤ 5. In addition, it is worthy to mention that the density of these graphs are very low.
The density values range between 1—High (very connected, clustered) and 0—Low (very spread out).

Table 2. Summary of datasets.

Los Angeles Rome Vancouver

No. of nodes 73,899 59,106 12,474
No. of edges 165,194 122,220 31,119
Average degree 4.47 4.13 4.98
Density 6.049 × 10−5 6.997 × 10−5 0.0004
No. of attributes per node 278 358 358
No. of class labels 9 9 9
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Figure 4. Distribution of street labels across the different cities. We see high variance between the
different classes of streets. The y-axis is the proportion of each street class plotted on the log scale.
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5.2. Attributing Graph Nodes

We attribute the graph nodes using descriptive information about the street by employing the
fixed multiple buffer approach described in [7]. We collect the count of pre-determined objects within
multiple buffers laid over each street. The buffers are polygons with rounded corners which take
the shape of the streets. The buffers are polygons with holes, with the exception of the first polygon.
For our experiments, we set the radii of the polygons to range from 10 m to 1000 m. The set of objects
considered within the buffers is outlined in Table 3. In OSM, descriptive information about objects is
grouped using tag types. Each tag type can hold multiple tag values. We consider five tag types and
34 tag values. Additionally, we include descriptive information about the streets collected from OSM
such as the length of the streets and a boolean value which denotes if the node is a one-way street or
not. The total number of attributes for each graph is given in Table 2. The disparity recorded for Los
Angeles is due to the unavailability of some tag values collected for other cities.

Table 3. OpenStreetMap (OSM) descriptive tags used to attribute the graph nodes.

Tag Type Tag Values

Amenity

parking, bench, school, restaurant,
fuel, cafe, bank, bicycle parking, bar,
pub, parking entrance, library,
community centre, marketplace

Building
house, apartments, residential,
garage, detached, industrial,
commercial, terrace

Land Use
residential, farmland, industrial,
commercial, retail, recreation
ground, railway

Shop department store, convenience,
supermarket, mall

Service driveway

5.3. Model Training Strategy

We train our neural network described in Section 4 using Algorithm 2 for 100 epochs.
Our architecture is a 2-layer feed-forward network with one hidden layer adapted from the attentional
layer described in [12]. The output of the hidden layer is activated using the Exponential Linear Unit
(ELU), the softmax activation is applied to the final layer to produce class probabilities [30]. We set
the learning rate, λ = 1× 10−3, it is worthy to mention that this value produced the best results in
our initial experiments. Our loss function is the cross-entropy loss and is minimised using the Adam
optimisation rule [38] in PyTorch [39]. For experimental purposes, we trained the network using the
following number of attention heads {2, 3, 4, 6, 8, 10}.

The nodes used for training are selected using Algorithm 1. The validation and test nodes are set
before train time. In our experiments, we set the number of validation and test nodes for each city to
be equal for all the models. Thus, despite the variance in the number of class sizes, this uniformity will
allow for an objective insight into the performance of each model. We preset the size of the validation
and test nodes as a function of the least occurring class in each dataset. We impose early-stopping
during model training by saving the best model, which are used for evaluations later. Note that the
best model is evaluated using the validation nodes. The model is validated at each epoch using the set
of validation nodes defined by the mask Vv = ρ(G). The mask is a set of boolean values that describes
the nodes to select. The model evaluation is presented using the test nodes in Section 6.
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Algorithm 2: Model Training.
Input :G = (V , E), H, Epoch, τ, ρ

Output :F ′(·)
Initialize n← 0, loss← inf, F (·), VT = τ(G), Vv = ρ(G);
while n < Epoch do
F (·) = Net(G|VT)

if Loss(F(G|Vv)) < loss then
F ′(·)← F (·)
loss← loss

end
n = n + 1

end
return F ′(·)

Furthermore, we train the models in two ways: Balanced and proportional. For the former,
we ensure that the train nodes are balanced, down-sampled to the least occurring class. For the
latter, we select a sample of the train nodes for each class as a proportion of its size in the graph.
This 2-way training approach is designed to represent both an ideal (balanced) case and the biased
class case (proportional). From Algorithm 2, τ is defined separately for both training approaches based
on class size or the balanced case, while ρ remains the same for all experiments. We present the results
for these experiments in Section 6. The neural networks are implemented using PyTorch [39].

5.4. Baseline Methods

In addition to evaluating our proposal against GAT [12], we compare our proposal two
state-of-the-art methods: GCN [11] and GraphSAGE [13]. Both methods are implemented in this
article by training for 100 epochs. We evaluate trained models on the validation set and save the
best performing one. The hyper-parameters outlined here were selected after an initial performance
evaluation. The cross-entropy loss is minimised using the Adam optimisation rule.

5.4.1. Graph Convolutional Network (GCN)

We implement the Graph Convolutional Network proposed in [11]. Our network is a 2-layer feed
forward network with 16 hidden features. We use the RELU activation function for the hidden layer.
During training, we use the L2 regularisation with λ = 0.0001. The final layer is activated using the
softmax function.

5.4.2. GraphSAGE

We set up the network proposed in [13] as a 3-layer feed forward network with 16 hidden
features. The activation function for the hidden layers is the RELU and softmax for the output layer.
The neighbourhood aggregation scheme used is the mean. We set the learning rate λ = 0.001.

5.5. Algorithmic Complexity

The computational cost of using multiple attention heads (K) in our neural framework increases
the memory and time requirements by a factor of K. Furthermore, the computation of Equation (1)
requires a traversal of the nodes in the graph at least once. Particularly, this could become really
expensive when computing B, requiring Θ(V3) time using a naive approach. In our implementation,
we approximate B using the approach described in [33] with a 25% sample of the graph nodes.
This reduces the time requirement to O(V · E), where V and E denote the number of nodes and edges
in the graph respectively. Nonetheless, this could still pose a challenge when computational resources
are limited, and we recognise this as a possible limitation of our proposal.
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6. Results

6.1. Evaluating the Trained Models

In Figures 5 and 6, we present the model accuracies at train time. For brevity, we only show
accuracies derived from models trained using a balanced set of train nodes. We compare models
trained naively using the approach described in [12] against ours (SAS-GAT). In Figure 5, we can
see the steady progression of the model as it converges. This is a clear contrast to the results of the
performance of the GAT model which peaks rapidly. This observation is indicative of a model overfit,
a recognised shortcoming of Graph Neural Networks [17].
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Figure 5. Plots showing the model training accuracy per epoch at train time. Each column represents
the number of attention heads used to train the models. The rows hold the accuracies for GAT and
our method.
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Figure 6. Plots showing the model validation accuracy per epoch for the validation set. Each column
represents the number of attention heads used to train the models. The rows hold the accuracies for
GAT and our method.

We compare the trained models by evaluating them using the micro and macro-averaged F1-score.
The general formula for the F1-score is given in Equation (8). Specifically, we compare the models
trained with the balanced set of training nodes (see Section 5.3) using the micro F1-score. While, for the
models built using the training nodes proportional to their class sizes, we use the macro F1-score as
this measure penalises class sizes:

F1-score = 2 ∗ (precision ∗ recall)
(precision + recall)

. (8)

We present the results in Table 4. In these Tables, we can see that the results are shown with
respect to the number of heads used to train the model. The values in these tables are the averages
taken after 10 iterations and their standard deviations are presented alongside. We see that in almost all
cases, the standard deviation is negligible which shows that the results of our models are not random.

We highlight the performance of our neural framework using the proposed sampling technique in
Figure 7. The values plotted in this figure are the average percentage improvement (F1-score) recorded
from our neural framework. We show the cases for varying number of heads. It can be seen that
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the general improvement from using more attention heads is not affected by our approach. Overall,
we can see that our proposal results in a more generalisable model compared to the traditional method.

Table 4. Summary of results for our method. We compare with GAT using the micro and macro
F1-score (%). Results in sub-table (a) are achieved training using a balanced set of training nodes.
Sub-table (b) denotes results achieved using a set of training nodes proportionate to the class size.
Best results for each case are in bold.

Datasets Los Angeles Rome Vancouver

Method GAT SAS-GAT GAT SAS-GAT GAT SAS-GAT

2H 15.2 ± 0.001 17.8 ± 0.001 9.3 ± 0.010 17.7 ± 0.003 8.3 ± 0.100 30.6 ± 0.012
3H 16.7 ± 0.110 13 ± 0.003 13.3 ± 0.013 18.4 ± 0.021 13.9 ± 0.111 25 ± 0.012
4H 11.9 ± 0.012 18.9 ± 0.010 10.9 ± 0.001 25 ± 0.025 13.9 ± 0.101 16.7 ± 0.101
6H 11.5 ± 0.190 17.8 ± 0.065 25 ± 0.192 31.3 ± 0.018 8.3 ± 0.010 19.4 ± 0.087
8H 7.8 ± 0.601 23 ± 0.013 9.3 ± 0.003 31.3 ± 0.006 11.1 ± 0.023 33.3 ± 0.021
10H 11.1 ± 0.011 21.9 ± 0.111 11.8 ± 0.901 30.2 ± 0.007 11.1 ± 0.072 30.6 ± 0.025

(a) micro F1-score

2H 3.7 ± 0.008 4.9 ± 0.072 8.6 ± 0.032 2.7 ± 0.012 4.4 ± 0.052 2.8 ± 0.094
3H 8.6 ± 0.002 10.3 ± 0.043 5.4 ± 0.021 5.7 ± 0.001 2.8 ± 0.012 19.7 ± 0.051
4H 3.5 ± 0.012 10.2 ± 0.001 9.1 ± 0.023 14.7 ± 0.022 3 ± 0.140 12.7 ± 0.011
6H 2.5 ± 0.020 11.5 ± 0.101 3.5 ± 0.005 8 ± 0.120 1.7 ± 0.059 20.3 ± 0.090
8H 3.5 ± 0.032 11.8 ± 0.020 6.8 ± 0.086 11.2 ± 0.049 4.5 ± 0.065 23.5 ± 0.094
10H 7.8 ± 0.011 13.2 ± 0.074 3.6 ± 0.091 11.8 ± 0.010 2.3 ± 0.005 19.6 ± 0.081

(b) macro F1-score

6.2. Evaluating the Generalisability of GNNs

It can be seen from Figure 5 that the training accuracy of the vanilla GNN peaks rapidly within
the first 20 epochs in all the cases. This behaviour is usually indicative that a model will overfit.
Model over-fitting and over-smoothing have been identified as limitations of GNNs [17]. This is
confirmed when we consider Figure 6 which holds the validation accuracy of the models. Here, we can
see that our sampling enables the model to improve and generalise better with each epoch. It is worthy
to reiterate that the same set of validation nodes are used for each dataset for all the models.

We evaluate the generalisation capacity in two dimensions: The balanced case and imbalanced
case. We present the results in Table 4. In the former, the training nodes are balanced while in the
latter, a proportion of the class sizes is used. We use two variants (micro and macro) of the F1-score to
demonstrate these cases. Clearly and as expected, the balanced case produces better generalisations
for all the datasets. However, we can see that in both cases, our neural framework generalises better.
In the imbalanced case, where the variance between class sizes could lead the model to overfit on
the majority class, we see that our sampling approach is able to mitigate this problem and produce
superior results.
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Figure 7. Plots showing the average percentage improvement. Each plot represents the experimental
results from each city and the lines denote whether the training nodes were balanced or a proportion
of the original class size. We see an improvement of as much as 20% using our sampling approach.
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6.3. Comparing the Baselines

We evaluate our sampling technique on two other baselines: A Graph Convolutional Network as
proposed in [11] and GraphSAGE [13]. For both methods, we incorporate our sampling technique.
The model training is done on the same graph nodes used for other methods. We present a summary of
results in Table 5. Results presented are the micro and macro-averaged F1-scores. The micro F1-score
metric is used for models trained using the balanced set of nodes, while the macro F1-score metric are
used for the proportional case. We see that using our sampling technique (SAS) leads to better results
in some cases. In addition, it is seen from the macro columns that our sampling technique generally
improves performance when the class sizes are biased. Nonetheless, the performance of these models
are not as impressive as the attention model (seen in Table 4). This observation suggests that attention
models may be better suited for noisy real-world graphs [12,22].

Table 5. Summary of results for the Graph Convolutional Networks (GCN) and GraphSAGE.
We compare results with models trained using our sampling technique SAS-GCN and SAS-GraphSAGE.
The metric used here is the micro and macro-averaged F1-score. Results presented are the averages.

Dataset Los Angeles Rome Vancouver

Method micro macro micro macro micro macro

GCN 0.13 0.04 0.13 0.08 0.08 0.08
SAS-GCN 0.11 0.08 0.11 0.06 0.17 0.08

GraphSAGE 0.13 0.03 0.11 0.07 0.08 0.05
SAS-GraphSAGE 0.12 0.05 0.09 0.04 0.22 0.07

7. Conclusions

In this article, we proposed a novel approach to sampling nodes when training Graph Neural
Networks for spatial graphs. This work is motivated by a need to improve the generalisability of
GNNs for noisy real-world graphs. Subsequently, the approach proposes to achieve this by encoding
global graph structure into the model development process. It was implemented by leveraging the
structure of the graph using intra-class and global-geodesic distances. The problem was formulated as a
node classification with one for noisy, biased, and multi-class graphs. The approach was evaluated on
three large real-world datasets that have a high variance between class sizes. Our evaluations showed
that our sampling approach was able to mitigate the problem of over-fitting and over-smoothing
observed in GNNs. In addition, we determined that our technique leads to a more generalisable
model. Consequently, we addressed the questions posed in Section 1: (1) Vanilla GNNs do not
generalise well on spatial graphs, at least not when compared to an approach using global structure.
(2) The performance of GNN models could improve significantly when global structure is taken into
consideration. (3) The generalisation capacity of GNN models can be improved when a global graph
structure is considered.

The significance of our results is appreciated in light of the recent interest in graph neural
methods among researchers. A limitation of traditional machine-learning methods is that they assume
independence between entities. This makes them unsuitable in situations where entities share a
relationship (i.e., exhibit dependence). Graph Neural Networks (GNNs) bridge this gap by preserving
the relational dependence between entities during learning. However, the focus of GNNs on local
neighbourhood with disregard for global structure could hamper model robustness for spatial graphs.
We believe that our work in this article will inspire a broader investigation into improving GNNs for
spatial tasks. In this article, we demonstrated the importance of global structure for learning on spatial
graphs. For future work, we will investigate the transferability of our method across street networks.
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