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Appendix B:

Elements of Linear
Systems Theory

8.1 DEFINITION OF LINEAR SYSTEMS

Linear systems are a particular, but very important, class of dynamic systems. As
such, they are characterized by input, state, and output variables, denoted by u, z,
and y, respectively. The symbol ¢ denotes time, and can be either an integer
(discrete-time system) or a real number (continuous-time system). We will consider
finite dimensional systems with a single input and a single output, that is,

ut) eR z(t) eR" y(f) R
where the dimension n of the state vector is called order of the system.
In discrete-time linear systems, the state vector is updated through a linear equa-
tion, called a state equation,
z(t+ 1) = Az(t) + bu(t) ®.1)

where A is an 7 X 7 matrix and b is an n x 1 vector, while the output depends.on
the state and input through a linear equation, called an output transformation,

y(t) = cTz(t) + du(t) (B.2)
225



226 ELEMENTS OF LINEAR SYSTEMS THEORY

where ¢ is a 1 x n row vector and d is a real. Written for each component of the

state vector, (B.1) corresponds to
z1(t+ 1) =aj1x1(t) + ... + a1nx,(t) + bult
To(t+1) = as1z1(t) + ... 4+ aonza(t) + bou(t
Tp(t+1) = an1@1(t) + . .. + AnnZn(t) + bru(?)

while (B.2) becomes

y(t) = c1z1(t) + ... + crzn(t) + duli)

Next, we will consider only time-invariant systems, that is, systems with A, b,cT,
and d constant over time.

Analogously, we can define continuous-time linear systems as systems with the
following state equation:

Z(t) = Az(t) + bu(t) (B.3)
where (t) is the derivative of z(¢) with respect to time, and
y(t) = cTz(t) + du(t) (B.4)

Thus, continuous-time and discrete-time linear systems are identified by the quadru-
ple (4,5,cT, d), which can be conveniently ordered as follows:

A: b:

o[ 4=

They are often graphically represented in one of the forms shown in Fig. B.l. The
first form shows only the input and output variables, called external variables, since
they are those through which the system interacts with the rest of the world. The
second form also shows the state variables, called internal.

In many systems, the input does not directly influence the output, that is, d = 0.
Such systems, called proper, are identified by the triple (4,8,¢7), while those
with d # 0, called improper, are identified by the quadruple (A, b, c¥'d). Systems
without input (b = 0,d = 0), are called autonomous and described, by the pair
(4,ch).

Next, we will discuss the main features of linear systems, starting from those
depending only on the matrix A (reversibility and internal stability), and continuing
with those characterized by the pair (A, b) (reachability), or by the pair (4, ¢T)
(observability), and ending with those depending on the triple (4,5, cT) or on the
quadruple (A, b, T, d) (external stability, minimum phase, minimality, etc.).
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u(t) y(?) u(t) z(t) y(t)

— A b df—— =t Ab cd

(a) (b)

Figure B.1 Representations of a linear system: (a) compact form; (b) disaggregated form
in which the first block represents the state equation and the second the output transformation.

ExAMPLE 1 (Newton’s law )
Suppose that a point mass m moves without friction along a straight line and that

a force u(t) is applied to it along the same direction. If y(t) is the position of the
point mass, measured with respect to a fixed point, Newton’s law states that

1 (t) = 22(2)
1
Eo(t) = —u(t
2a(t) = —~ult)
while the output transformation is

y(t) = z1(t) -

In conclusion, Newton’s law is described by a proper linear system identified by

the triple 0
4=(50) =(um)

CT:(l 0)

ExaMPLE 2 (Fibonacci’s rabbits)

Maybe the oldest example of a discrete-time linear system is that concerning a
rabbit population described by Leonardo Fibonacci irom Pisa (1180-1250) in the
book Liber Abaci. Let us denote the year by t, the number of pairs of young and
adult rabbits at the beginning of year ¢ by x;1(¢) and z2(t), the number of pairs of
adult rabbits killed by hunters during year ¢ by (t), and the total number of pairs
of rabbits with y(¢). The assumptions made by Fibonacci (some of them are a bit
extreme) are the following:

- Young rabbits do not reproduce.

- Young rabbits become adult after 1 year.
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- Adult rabbits reproduce once a year.
- Each pair of adult rabbits generate a pair of young rabbits.
- Rabbits do not die.

Under these assumptions, a simple balance of young and adult rabbits leads to the
following state equation:

V| s S

while the output transformation is

y(t) = z1(t) + z2(t)

Thus, the system is proper and identified by the triple

a=(11) »=(21)

=(11)

If we assume that at time t = O there is only one pair of young rabbits, that is,

0= (})

and that there are no hunters [u(t) = 0 for all t], the state equation and the output
transformation can be used recursively to determine the growth of the population,
namely, the output sequence y(0), ¥(1),y(2),.... The reader can easily verify that
each element of the sequence is equal to the sum of the two previous elements
(Fibonacci’s series).

&

B.2 ARMA MODEL AND TRANSFER FUNCTION

The definition of linear systems given in the previous paragraph is often termed
internal since it explicitly refers to the state of the system. For the same reason, the
alternative definition involving only input and output variables is called external.
The definition is as follows: In a discrete-time system of order 7, a weighted sum
of (n + 1) subsequent input values equals, at any time t, a weighted sum of the
corresponding output values, namely,

y(t)+ary(t—1)+- - +ony(t—n) = fou(t) +Bult—1)+-- -+ Bru(t—n) (B.5)
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If Bo # 0, the input u(t) directly influences the output y(t) and, therefore, the
system is improper. If, on the contrary, Bo = 0 the system is proper. Equation
(B.5) is often used in the form

n n
y(t) = Y (—aayt—19) + > Biult — i) (B.6)
Coi=l i=0
in which the first term of the right-hand side is called autoregression and the second
moving average. For this reason, Eq. (B.5) is known as the autoregressive moving
average model often abbreviated as the ARMA model. The continuous-time analog
of Eq. (B.S5) is the differential equation of order n

Y (&) +any D (1) ++ -+ any @ (8) = Bou™ () +Fru D () + -+ Bl (0)
B8.7

where u((t) and y®)(t) are the ith derivatives of input and output. Also, this
model will be called (even if unproperly) the ARMA model.

The interpretation of Newton’s law (see Example 1) can be completed by noting
that the relationship

i) = —u®)

is a particular case of Eq. (B.7) (MA model, i.e. ARMA model without the
autoregressive term). As for the Fibonacci’s rabbits (Example 2) the ARMA model
is (easy to check)

y(t) —y(t — 1) —y(t - 2) = —u(t = 1) —u(t - 2)

This ARMA model can be used to recursively generate the Fibonacei’s series [by
annihilating the input and setting y(0) = y(1) = 1].
Equations (B.5) and (B.7) can be written in the general form

D(p)y(t) = N(p)u(t) (B.8)
where D(-) and N(-) are two polynomials of degree n

D(p)=p" +oup" '+ +an
N(p) = fop™ + brp" "+ + P

and p is a “shift” operator for the discrete-time case (i.e., py(t) = y(t+1), Py(t) =
y(t+2),...,) and a “derivative” operator for the continuous-time case [i.e., py(t) =
3, p*y(t) = #(t), ...]. An ARMA model is therefore equivalent to two polynomials
D(-) and N(-) or, alternatively, to 2n + 1 parameters Bo and {a;, Bi},i=1,...,n.
Usually, the symbol p in (B.8) is replaced by z[s] when dealing with discrete
[continuous] -time systems. Thus, for example, Newton’s law (Example 1) is
described by
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() d(p)—2LE

Figure B.2 Decomposition of an unreduced ARMA model [D(p), N(p)] in a reduced
ARMA model [n{p),d(p)], and in an AR model [r(p)].

1
D(s) =s? N(s)=—
() =" Nis)==
while Fibonacci’s rabbits (Example 2) are described by
D(z)=22~2-1 N(z)=-2-1

If the two polynomials D(-) and N(-) are coprime (i.e., they do not have common
zeros), the ARMA model is said to be in reduced form or, simply, reduced. In such
a case, the polynomial D(-) being monic, the knowledge of the pair [D(-), N(-)]
is equivalent to the knowledge of the ratio D(-)/N(-), called the zransfer function
and denoted by G(-), that is,

N(p)
G(p) = —~= (B.9)
, ®) D(p)
If the ARMA model is not in reduced form, namely, if
D(p) = r(p)d(p)
(B.10)

N(p) = r(p)n(p)

with n(-) and d(-) coprime, the transfer function (B.9) is equal to n(p)/d(p).
The roots of n(-) and d(-) are called, respectively, zeros and poles of the transfer
function. If we take into account Eq. (B.8) and (B.10), one can check that an
unreduced ARMA model can be decomposed, as shown in Fig. B.2, in a reduced
ARMA model identified by the pair of coprime polynomials [d(-), n(-)].

d(p)y(t) = n(p)w(t) (B.11)
and in an AR model determined by the polynomial (),
r(p)v(t) =0 (B.12)

In fact, if (B.11) is multiplied by r(p) and (B.12) is taken into account together
with the fact that
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w(t) = v(t) + u(t)

Eq. (B.8) with D(p) and N(p) given by (B.10) is obtained. Figure B.2 clearly
shows that the transfer function G(p) = n(p)/d(p) exclusively describes the re-
duced part of the ARMA model. In other words, if only the transfer function is
known, it is not possible to compute the output of the system from its input, unless
the signal v(-) is identically zero, which occurs when the initial condition of the
AR model (B.12) is zero.

B.3 COMPUTATION OF TRANSFER FUNCTIONS AND REALIZATION

Since we have given two different definitions of a dynamical system (one internal
and one external) it is important to show how it is possible to move from one
description to the other.

The problem of the computation of the ARMA model and of the transfer function
of a system, given the quadruple (A4, b,cT,d), can be fully understood only after
introducing the notions of reachability and observability. For the moment, notice
that Egs. (B.1) and (B.3), recalling the meaning of the operator p, can be written
in the form

pz(t) = Az(t) + bu(t)
so that
=(t) = (pI — A) " bu(t)
From (B.2) and (B.4), it follows that
y(t) = [T (pI — A) b + dJu(t)

which, compared with (B.8) and (B.9) yields

Glp) =T (pI — A 'b+d (B.13)
The inverse of the n x n matrix (pI — A) can be written in the form
-1 1
- = —P
(pl = A) " = T P(p)

where P(p) is an n X n matrix of polynomials with a degree < n and A 4(p) is
the characteristic polynomial of A. Then, A 4(p) and P(p) can be computed using
the following formulas (due to Souriau):

As(p)=p" +a1p" 1+ +an
P(p)=Pop" '+ Pp" 2+ + Py
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where

Po =7 ] o] = —TJ’(P()A)

1
Py=P A+l Qg = —§U‘(P1A)

Py=PiA+asl Qg = —-:rl)’-tr(PzA)

1
Poi=FpA+tan il op= —;l-tr(P _1A)

If the transfer function G (p) = n(p) / d(p) computed by means of (B.13) has the
polynomial d(p) with degree n, then, from Souriau’s formulas it follows that:

d(p) = D(p) = Aa(p)

that is the ARMA model [D(p), N(p)] of the system is in reduced form and the
poles of the transfer function are n and coincide with the eigenvalues of matrix A.
In contrast, if the degree of d(-) is < n, the poles of the transfer function are < n
but still coincide with some of the eigenvalues of matrix A.

The problem of the computation of the quadruple (4, b, cT, d) from an ARMA
model [D(p), N (p)] is known as the realization problem [the quadruple (4, b, ¢T, d),
which solves the problem, is also called realization]. The solution of such a problem
is not unique, so that it is particularly interesting to determine the realization with
minimal dimension. In order to deal with this problem, it is necessary, however,
to be aware of the notions of reachability and observability. For the moment, let
us state that a particular realization, called control canonical form, of a reduced
ARMA model

D(p)=p"+op" 1+t an

(B.14)
N(p) = fop" + Bip" L+ +

is the quadruple

0 1 0 .. 0 8
) 0 0 10 ,
c= 0 0 0 i . = 0
—Qp —O0p-1 —0p_2 - 1
F=(m 1 e e M) d=

with
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Notice that the order n of the control canonical form is equal to the “memory” of
the autoregressive component of the ARMA model.
A second realization, called reconstruction canonical form, is the following

0 0 0 —on Yo
1 0 . O —Qp_1 ’Y‘n.—l
0 0 1 —;11 ');1
F=(00 .0 1) d= f

with

It is worth noting that
(Ar, by, CZ-', dr) = (A’f7 Ce, bz’> dc)

which is a formula that we will recall when discussing the duality principle.

ExaMpLE 3 (Fibonacci’s rabbits)
Consider the ARMA model

D(z)=22-2~-1 N(@)=-2z-1
which, as previously shown, is the ARMA model describing the growth of the

Fibonacci’s rabbits (see Example 2). The control and reconstruction canonical
forms of this ARMA model are

(1) w=(D)
and

d=(0 1)

and are, therefore, different from the triple (A, b, cT) used in Example 2.
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u(t)

w4y

y(x)(t) :’um(t) Ez y(t)

Figure B.3 Two systems connected in series.

B.4 INTERCONNECTED SUBSYSTEMS AND MASON’S FORMULA

Very often a dynamic system ¥ is composed of interconnected subsystems ;. Two
dynamic systems, ¥; and X5, can be interconnected in three ways: in series, in
parallel, and in feedback. If (1) and z(® are the state vectors of I, and Ty, the
state vector z of ¥ is z = [z} a;(?)T]T. Thus, if &; = (A, b, ¢f,di), i =1,2,
are the two subsystems, we are interested in the determination of the interconnected
system ¥ = (4, 5,c7,d).

Series

Two systems are connected in series (Fig. B.3) when the output of the first system
is the input of the second system.

The state equations of ¥ are therefore

.’B(l) (t) = Al 11,‘(1) (t) + blu(t)
@ () = AszD(t) + ba(cT =M (t) + dyu(t))

while the output transformation is
y(t) = g 2@ (t) + da(c] 2V (2) + dyu(®))

In conclusion, ¥ is identified by the following quadruple:

— Al 0 _ b1
A"<b261T A2> b“(bzdl)
CT = ( dgcr{ Cg‘ ) d= (d1d2)

Observe that matrix A is in block triangular form, so that its eigenvalues are those
of matrices A; and A,.

Parallel
Two systems are connected in parallel (Fig. B.4) when they have the same input
and the output of the overall system is the sum of their outputs.

It is straightforward to check that ¥ is identified by the following four matrices

A= (4 /?2) b:(ll;;)
T=(cf &) d=(di+dy)

Also, in this case matrix A is block triangular (actually, diagonal) so that its eigen-
values are those of matrices A; and A,.
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SR AU
u(t) | + y(t)
A0

2,

Figure B.4 Two systems connected in parallel.

u(t) 4 s, y(t)

ym(t) 22

Figure B.5 Two systems connected in feedback (£, is the forward path and 5, the
feedback path).

Feedback
Two systems are connected in feedback (Fig. B.5) when the input of the first system
is the sum of an external input u and of the output of the second system and the
input of the second system is the output of the first one.

Obviously, interconnected subsystems can also be studied from the point of view
of their external behavior. Actually, the ARMA model and the transfer function of
a system X can be easily determinated from the ARMA models and the transfer

* functions of all its subsystems X;. To verify this statement, we first analyze the

cases of series, parallel, and feedback connections of two subsystems.

Series
With reference to Fig. B.3, let ¥ = [D1(p), N1(p)] and X3 = [Da(p), No(p)].
This means that the ARMA model of the first subsystem is

Di(p)y™V(t) = Mi(p)u(?t)

By applying to both sides of this equation the operator N2(p) and by noting that
M = 4@, we obtain

Na(p)D1(p)u® (t) = Na(p)N1(p)u(t)

But NoDy = D1 Ny and N3 N1 = N1N; since deriving (or shifting) a function first
r times and then s times is equivalent to deriving (or shifting) it first s times and
then r times. Thus, we can write

D1 (p)Na(p)u® (t) = N1 (p) Na(p)ul(t)
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On the other hand, the ARMA equation of the second subsystem is

D, (p)y(t) = Na(p)ul®(¢)

so that, finally, we obtain

D1(p)D2(p)y(t) = N1(p) Na(p)u(t)

In other words, if two systems ¥; and ¥ are connected in series, the resulting
system X is characterized by an ARMA model identified by the following two
polynomials:

D(p) = D1(p)D2(p) N(p) = N1(p)N2(p)

This means that the transfer function G(p) = N(p)/D(p) of T can be obtained
by multiplying the two transfer functions G1(p) and G2 (p) of the two subsystems,
that is,

G(p) = G1(p)G:(p)

This result allows one to conclude that the order in which the two systems are
connected is not relevant when computing the transfer function of the resulting
system.

Parallel .
With reference to Fig. B.4, proceeding as in the case of the series connection, it is
easy to show that the transfer function of ¥ is

G(p) = G1(p) + Ga(p)

In other words, the transfer function of a system composed of two systems connected
in parallel is the sum of their transfer functions.

Feedback
In the case of two systems X; and ¥y connected in feedback, as shown in Fig.
B.5, one obtains

G1(p)
1 - G1(p)G2(p)

This formula is very useful in the analysis of feedback systems. It holds for the
connection shown in Fig. B.5 where the feedback is called positive since the signal
3@ coming from the feedback path is summed to the external signal . In contrast,
if one considers the negative feedback

G(p) =

D =y — y@
the formula to be used is the following:

Gi(p)

P WD)
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This formula is often described by saying that the transfer function of a system
with a negative feedback is the ratio between the transfer function of the direct path
(G1) and the loop transfer function (G1G2) plus one (G1 G5 is the loop transfer
function because, in the loop, the two systems ¥, and X5 are connected in series).

Mason’s formula

Mason’s formula allows one to compute the transfer function G(p) of any system
composed of interconnected subsystems. Under the nonlimiting assumption that
signals are only summed (and not subtracted) the formula is

Y% Cr (D) Ar(p)
A(p)

where Ci(p), A(p), and Ag(p) are called, respectively, transfer function of the
kth direct input—output path, determinant of the system, and reduced determinant
with respect to the kth direct path. The transfer function Cy(p) is simply the
product of the transfer functions of all the systems composing the kth direct (i.e.,
not containing cycles) path from input to output. The determinant A(p) is given

by

Alp)=1=-3 Lip)+y_ > Lp)Li®)->_ > > Li(®)L;(p)Li(p)+ - --
i PR i 5k

G(p) =

where L;(p) is the transfer function of the ith closed path (loop), that is, the product
of the transfer functions of all the subsystems composing the ith closed path exiting
in the system. The first sum in the formula concerns all the loops, the second
all the disjoint pairs of loops (i.e., loops that do not touch each other) and so on.
Finally, the reduced determinant A, is the determinant A without all the terms
corresponding to loops that are touched by the kth direct path. On occasions, it
may not be easy to find all the direct paths and all the loops by inspection of the
graph representing the interconnected system. However, in many cases of practical
interest, Mason’s formula is straightforward to apply, particularly when there are
no disjoint loops.

B.5 CHANGE OF COORDINATES AND EQUIVALENT SYSTEMS

The quadruple (4, b, T, d) describing a linear system depends on the units chosen
for time, input, state and output variables and on the order in which the state vari-
ables are listed. But, the choice of the variables to be considered as state variables is
also not unique and has an impact on the quadruple (A, b, ¢T, d) that identifies the
system. For example, in a chemical reactor characterized by two species, one can
consider as state variables the concentrations z; and z4 of such species or, alterna-
tively, their sum 2 and their difference z;. Obviously, the quadruple (A, b, cT, d)
corresponding to the state variables (21, 2) is different from that corresponding to
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the state variables (21, 22) while the system, from a physical point of view, is the
same. For this reason, the two quadruples are called equivalent. In order to find
the relationship among equivalent quadruples, it is necessary to determine the effect
of a change of coordinates

z2=Tzx

In the case of the chemical reactor, for example, the change of coordinates z = T'z

is given by
21\ _f(x+ze Y _ (1 1 1
z2 Jo\z1—22 /) 1 -1 T2
It is straightforward to check that a change of coordinates z = Tz transforms
the discrete-time system (B.1), (B.2) into the equivalent system

2(t + 1) = TAT ' 2(t) + Tbu(t)
y(t) = TT1z(t) + du(t)
Analogously, the continuous-time system (B.3), (B.4) is transformed into the system
2(t) = TAT 7 2(t) + Tbu(t)
y(t) =TT 1z(t) + du(t)

In conclusion, a change of coordinates z = T’z transforms the quadruple (4, b, cT,d)
into the quadruple (TAT 2, Tb,cTT™1, d).

B.6 MOTION, TRAJECTORY, AND EQUILIBRIUM

Once the initial state z(0) and the input u(t) for ¢ > 0 are fixed, the state equations
(B.1) and (B.3) admit a unique solution z(t) for ¢ > 0 (this is pretty obvious for
discrete-time systems while, for continuous-time systems, it follows from results
of existence and uniqueness of ordinary differential equations). The function x(-)
thus obtained, is called motion, while the set {z(t),t > 0} in the space R" is
called trajectory. The trajectory of a continuous-time system is a line originating
from point x(0) and with a specified direction [see Fig. B.6(a) ]. In the case of
discrete-time systems, the trajectory is a sequence of points {z(0),z(1),...} that,
for the sake of clarity, are often linked one to the next with a segmented straight
line, as shown in Fig. B.6(b).

As shown in Fig. B.6(a), it may happen that the trajectory passes through the
same point = at different instants of time t1,%, and so on, and that the vectors
tangent to the trajectory at that point are different. In fact, the tangent vector is &
and therefore, the case shown in Fig. B.6(a) can occurs if

Az + bu(ty) # Az + bu(tz)
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Z,

z(1)
¢ T
2(0)” (o] S

(a) (6)

Figure B.6 Trajectories of second-order systems: (a) continuous-time systems; (b)
discrete-time systems.

that is,

bu(tr) # bul(tz)

Obviously, such conditions cannot hold if the input u is constant over time.
It may occur that the motion z(+) corresponding to a particular initial state z(0)
and to a particular input function is periodic with period T, that is,

(t) =zt +T) Vt

In this case, the trajectory is a closed line (cycle) repeatedly visited every T' time
units. If z is periodic, then so is £, so that

Az +bu(t) = Az(t +T) + bu(t +T) ¥t

and therefore

bu(t) = bu(t +7) Vt (B.15)
This means that a cycle can possibly be obtained only if the input function satisfies
condition (B.15). It is important to note that condition (B.15) holds for every
periodic input function with period T" and, consequently, for any constant input.
A degenerate case occurs when the state of the system does not change over
time, so that the cycle is represented by a point Z called an equilibrium state. To
this purpose, we give Definition 1.

DEFINITION 1 (equilibrium)
A system is said to be at equilibrium if input and state (and, therefore, also
output) are constant, that is, if

u(ty=a z(t)=2% y(t)=9 ¥t

Vector T is called an equilibrium state.
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Since for continuous-time systems, z({t) = Z Vt implies z(¢) = 0, it follows that

in such systems
AZ +ba =0 (B.16)
7=c'z+du (B.17)

If A is nonsingular (i.e., if det A # 0 or, equivalently, if A has no zero eigenvalues),
then there exists a unique solution Z to Eq. (B.16) for each 4, and, therefore, there
is also only one solution ¥ of (B.17), which are formally given by

i=—-A"1ba g=(d-cTA bz (B.18)

In the case A is singular [det A = 0]‘ and @ is fixed, either no solutions Z,§ of
(B.16), (B.17) exist or they are infinite.

For discrete-time systems, Eq. (B.16) and (B.17) must be replaced by the rela-
tions

(I-Az=bu

g=cTz +du
so that uniqueness of the equilibrium state (and output) for any fixed @ is guaranteed
by nonsingularity of the matrix (I — A), that is,

det(I — A)#0

or, equivalently, from the fact that A has no unitary eigenvalues. In such cases, one
has

T=(I- A) ‘ba g=d+cI-A) e (B.19)

Equations (B.18) and (B.19) show that in nonsingular cases the relationship between
input and output at the equilibrium is linear.  Since for single input and single output
systems it is usual to define the gain of the system as the ratio « between output
and input at the equilibrium

lj,:

SRS

then, for continuous-time systems the following formula holds:
p=d-— cTA
while for discrete-time systems one has
p=d+cT(I— A

Obviously, the same formulas show that it is meaningless to define a gain in singular
cases.
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It is important to note that the calculation of the gain is straightforward whenever
the input—output relation (B.7) of a continuous-time system is known, since the

equilibrium condition implies y® = u® = 0,i = 1,...,7,9©® = g and u© = g,
so that
_ bn
= . (B.20)

For discrete-time systems, one has {see (B.6) ]

§= >oimoBi
1 -+ Z?:I (s H}

Note that, denoting with G(s) the transfer function of a continuous-time system,
Eq. (B.20) is equivalent to 1 = G(0), so that the gain y is equal to the value of the
transfer function for s = 0. For discrete-time systems with transfer function G(2),
from (B.21) it follows that u = G(1), that is, the gain is equal to the value of the
transfer function for z = 1.

The gain is also easy to compute in the case of systems composed of intercon-
nected subsystems. It is in fact immediate to verify that the gain p of a system
composed of two subsystems connected in series is the product of the gains of the
two subsystems, that is,

(B.21)

B = pape

while for parallel connections, the following formula holds

H= 1+ pg
and for feedback connections we have

H1

T

B.7 LAGRANGE’S FORMULA AND TRANSITION MATRIX

From state equations of a linear system, it follows that the state at time £ is a
function of the initial state at time ¢ = 0, of the input during the interval of time
[0,t) and, obviously, of the considered interval of time . Obtaining an explicit
solution, in the usual sense, of the state equations is possible only in particularly
simple cases (typically, for first- and second-order systems). The solution can be,
however, specified and written in a particularly useful form for the understanding
of many problems and for the proof of several properties. In the case of continuous-
time systems, the formula is credited to Lagrange; for the sake of simplicity, we
will give the same name to the corresponding formula holding for discrete-time
systems.
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THEOREM 1 (Lagrange formula)
In a continuous-time linear system

z(t) = Az(t) + bu(t)
the state z(¢) for ¢ > 0 is given by (Lagrange formula)
t
z(t) = ez (0) + / eAt=pu(€)de (B.22)
0
where N . 2 y 8 )
e =TI+ At+ o + 3 +-
Analogously, in a discrete-time linear system
z(t + 1) = Az(t) + bu(t)

for ¢ > 0, the following holds:

t-—-1
z(t) = A'z(0) + Y A bu(i) (B.23)

3=0

Equation (B.23) is also called the Lagrange formula.

The Lagrange formulas (B.22) and (B.23) can be rewritten in a more compact form
as follows:

z(t) = (t)z(0) + Y (t)uo,g () (B.24)
where ®(t) and ¥(t) are linear transformations acting, respectively, on the initial
state z(0) and on the segment u[g y(-) of the input function u(-). By comparing Eq.
(B.24) with (B.22) and (B.23), it follows that the matrix ®(¢), called the transition
matrix, is given by

et for continuous-time systems
o(t) = _
At for discrete-time systems

Equation (B.24) states that the state of the system is at any time given by the sum
of two terms, the first linearly depending on the initial state and the second linearly
depending on the input. These two contributions to the motion of a dynamic system
are called, respectively, free motion and forced motion. The reason for such names
is obvious: ®(t)z(0) represents the evolution of the “free” system, that is, of the
system with a null input (or without input, as usually said), while W(t)u ;) (-)
represents the evolution of the system initially at rest [z{0) = 0] but forced py the
input u(-). By applying the output transformation given by (B.24), one obtains

y(ty = CT(I)(t):L‘(O) + CT‘I’(t)U[(),t)(~) + du(t) (B.25)
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which clearly shows that the output is the sum of free and forced evolutions.
Equation (B.25), if appropriately interpreted, allows us to formulate the so-called
superposition principle, often recalled when talking about dynamic linear systems.

'THEOREM 2 (superposition principle)

If the pair (2'(0), u/(-)) gives rise to the output y/(-) and the pair (" {0),w"(-))
to the output y"(-), then the pair [az’(0) + Bz” (0), a/(-) + Bu” (-)] gives rise
to the same linear combination ay/(-) + By”(-) of the outputs.

Among the most frequently used formulas of any discipline, it is almost invari-
ably possible to find some that are nothing but the Lagrange formula applied to
simple first- or second-order systems. The law of the falling of bodies, the law of
charge and discharge of a capacitor, the law governing the rise of temperature in a
thermometer, and the one describing the release from a reservoir, are just examples
of the application of the Lagrange formula to continuous-time systems. But the
same holds for laws regarding discrete-time systems, as shown in Example 4.

EXAMPLE 4 (amortization)
If a debt D is amortized by returning for N consequent years an amount A, the
debt « varies during the years according to the equation

z(t+1)=(1+p)z(t)— A

where p is the annual interest rate. One can then apply the Lagrange formula (B.23)
with £ = IV and (%) = A to such a system thus obtaining

N-1
s(N)=(1+p)"D=A>" (14"

i=0

By imposing the final condition z(N) = 0 and by solving with respect to A, one
obtains the famous amortization formula
o
= — )
1-(1+p7"

»

The Lagrange formula should ot be regarded as a formula useful for the cal-
culation of the state evolution of a linear system. Such a statement is particularly
simple to illustrate in the case of discrete-time systems. In fact, in such systems,
the state evolution can be computed by a repeated use for ¢t = 0, 1,2, and so on, of
the equation

z(t + 1) = Az(t) + bu(t)

By doing so, at each step n® +n multiplications are needed and about the same num-
ber of sums, so that the computation of (1), 2(2), ... , Z(N) requires Nn(n + 1)
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elementary operations. The computation of the same vectors by means of (B.23) is
indeed much more onerous since the evaluation the matrix powers A2, A3, ... AN
is an operation requiring Nn® elementary operations. The importance of the La-
grange formula is then mostly related to conceptual and formal aspects of the theory
of linear systems.

B.8 REVERSIBILITY

In a dynamic system, the input in an interval of time [0,#] and the initial state
z(0) uniquely determine the state z(t) and the output y(t) at the final time ¢. In
other words, the future evolution of the system is always guaranteed and uniquely
determined. In the case of a linear system, this is clear from the Lagrange formulas
(B.22) and (B.23) holding for ¢ > 0. In some systems, the existence of the evolution
is guaranteed and uniquely determined also in the past. Such systems are called
reversible. For a linear system, Theorem 3 holds.

THEOREM 3 (reversibility condition)

Continuous-time linear systems are reversible, while discrete-time systems are
such if and only if their matrix A is nonsingular.

The proof of Theorem 3 foliows from the fact that in continuous-time systems the
transition matrix ®(¢) = e’ is invertible [its inverse is, in fact, ®~(¢) = e~41].
On the contrary, in the case of discrete-time systems ©(t) = A%, so that ®(t) is
invertible if and only if A? and, therefore, A is invertible.

Theorem 3 let us envisage a strong analogy between reversible continuous and
discrete -time systems. On the other hand, it is clear that discrete-time systems need
more attention. The peculiarity of irreversibility is often not emphasized as it should
be, mainly because the discrete-time systems that are more frequently studied are
the sampled-data systems that, as it will be shown in Section B.9, are reversible.
However, there are important classes of discrete-time systems that are irreversible,
such as the finite memory systems. Such systems have the property that the initial
state influences the systems evolution only for a finite period of time. Since

z(t) = @()z(0) + ¥ (t)ujo, (")

the free motion is zero from a certain time, for any initial state z(0). This implies
that det ®(t) = det(A’) = (det A)* = 0, that is, the system is irreversible.

B.9 SAMPLED-DATA SYSTEMS

The input of many continuous-time systems is often changed at precise instants of
time, and then kept constant for an interval of time. This may occur in a production
system, in which the production rate is fixed each week, in the reactions induced
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by a drug treatment delivered by perfusion each day, in the exploitation of water
supplies for the production of electric power in which the power of an hydraulic
turbine is scheduled to vary each hour, and in many other systems characterized by
the presence of a supervisor who, for different reasons, considers it not appropriate
to control the system continuously. Once a decision is taken at each instant, the
input of the system (production rate, drug delivery rate, turbine power) is kept
constant for a certain interval of time, to the end of which a new decision is taken.
Unlike inputs, the state variables characterizing the system (stocks, concentrations,
water supplies) vary (sometimes quite heavily) during such an interval of time. An
analogous situation can often be found in industrial automation, where computers
are used for controlling various processes: During a certain interval of time, the
computer processes the information received and determines the value 4 of the input
to be applied to the system during the subsequent interval of time. As shown in
Fig. B.7, an interface is needed between the computer and the system, called hold
circuit, able to transform the digital input of the computer into a constant analog
signal (input of the system).

£,

holdlng u System —-——?{—-—
circuit

computer

Figure B.7 Sampled-data system.

Also, for state (z) and output (y) variables, the assumption considered in order
to define sampled-data systems is consistent with the modern measurement tech-
niques that repeatedly “read” the values Z and gy at specific times, called sampling
times. The interval of times occurring between successive sampling times is called
a sampling interval.

The simplest sampling scheme, depicted in Fig. B.8 is characterized by having
the same sampling time for all variables (state and output) and sampling interval T
constant and equal to the interval in which the input is kept constant.

More complex sampling schemes are obtained when T is not constant over time
(random sampling and adaptive sampling), when the sampling interval is not the
same for all variables (multirate sampling), when, though T is the same for all
variables, the sampling instants are shifted over time (asynchronous sampling); or
when the holding circuit, instead of keeping constant the input to the system, allows
it to vary following a fixed law (e.g., linearly). If we consider the simplest case,
we are then dealing with a continuous-time system

z(t) = Ax(t) + bu(t)
y(t) = cTx(t) + du()
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0 T 2T 3T 4T 5T ¢t

Figure B.8 Input, state, and output of the simplest sampled-data system.

with piecewise constant input. After'having numbered the sampling instants with
the index k£ = 0,1, 2, and so on, we can then define input 4, state Z, and output §
variables of the sampled-data system, in the following way (see Fig. B.8):

k) =u(t) kT <t<(k+1)T
(k) = a(kT)
§(k) = y(kT)

By applying the Lagrange formula (B.22) to the continuous-time system with initial
time kT and final time (k + 1)7’, and by taking into account that between those
two instants the input is constant and equal to 4(k), one gets

T
z((k + 1)T) = eAT2(kT) + / AT deba(k)
' 0

By substituting in this equation z(kT) and z((k + 1)T) with (k) and Z(k + 1)
and taking into account that

T T
/ eMT=8de = / eAtde
0 0

one obtains
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T
Bk + 1) = eATE(k) + ( / eAfdg) bii(k)
0

which is the state equation of the sampled-data system, interpreted as a discrete-time
system. Since, clearly, the output transformation holds also for sampled variables,
we can conclude that a sampled-data system is a discrete-time system

#(k + 1) = Az(k) + ba(k)
§(k) = eT&(k) + du(k)

with _ _ _
A= b= (f7eMdg)b T =c" d=d

EXAMPLE 5 (mechanical system)

Let us consider again the mechanical system described in Example I, composed of
a point mass 7 moving along a straight line and to which a force u(t) is applied.
If z; = y and x, are the position and velocity of the mass and there is no friction,
the system is described by the triple

A=(86) v=(1jm)
T=(10)

Since A2 = 0 (and, therefore, A* = 0,4 > 2) the transition matrix results to be

o rpar=(4 )

so that the sampled-data system is described by the triple

Aot (5 T) b= (Fera)o= (5 ) () = ()
F=cT=(10)
L )

It is important to note that an entire family of sampled-data systems 3 is associated
to each continuous-time system ¥, since, even if the notation adopted does not show
this clearly, the matrix A and the vector b depend on the sampling interval 7. It
is therefore interesting to know whether a property holding for the continuous- time
system 3 is maintained for the family & or whether a property that does not hold for
¥ can be “gained” by sampling the system using an appropriate sampling interval.
As stated in Section B.8, we can find reversibility among the properties that are
maintained under sampling. All sampled-data systems 3 are in fact reversible (just
as continuous-time systems), since the matrix A = eAT is nonsingular for any
sampling interval (actually, eAT admits as inverse the matrix e=47).
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B.10 INTERNAL STABILITY: DEFINITIONS

Stability is certainly the most studied property of a dynamical system. As we will
see, it allows us to characterize the asymptotic behavior (t — o) of the system,
which is a very important feature in applications.

DEFINITION 2 (asymptotic stability, simple stability, and instability)

A linear system is asymptotically stable if and only if its free motion tends to
zero as (¢ — co) for any initial state. If, instead, the free motion is bounded
but does not tend to zero for some initial state, the system is said to be simply

stable. Finally, if the free motion is unbounded for some initial state, the system
is said to be unstable.

On the basis of this definition, it is immediate to see that the two systems
discussed in the first two Examples (Newton’s law and Fibonacci’s rabbits) are
both unstable. The first, however, is a weakly unstable system since the free
motion, though unbounded, grows with time following a polynomial law, which is
linear in this case. On the other hand, the second is strongly unstable, since the
free motion grows exponentially.

From Definition 2 it follows that a system is asymptotically stable if and only if

lim &(t) =0

that is, if and only if all the entries of the transition matrix tend to Zero as t — oo.
Finite memory systems are then asymptotically stable.

The most important property (easy to prove) of asymptotically stable systems,
sometimes used as an alternative definition of asymptotic stability, is the following:

THEOREM 4 (asymptotic stability and convergence to equilibrium)

A system is asymptotically stable if and only if for any input % there exists a
single equilibrium state Z and x(t) tends to % for ¢ — oo for any z(0) when
u(t) = 4.

It is worth noting that in the unstable system corresponding to Newton’s law,
we have for @ = 0 an infinite number of equilibria 77 = |z, 0|7, while in the

system describing Fibonacci’s rabbits, the equilibrium state Z is unique but x(t)
does not tend to Z as £ — oo.

B.11 EIGENVALUES AND STABILITY

Stability of linear systems can be fully understood by making reference to the Jordan
canonical form A; of the matrix A. More precisely, by means of an appropriate
change of the state variables

ZZTJ:ZI
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it is possible to transform the given system (A4, b,cT, d) ilntp an equivalent one
(Ty, AT7,Tyb,cTT51,d) in which the matrix Ty, AT, is the Jordan matrix
Ay. The free motion of the system is then described by the equations

2(t) = Ajz(t)
in the case of a continuous-time system and by the equations
2(t+1) = Ayz(t)

in the case of a discrete-time system. The advantage of such a transfon"mation is that,
due to the structure of the matrix Ay (see Appendix A), the system is decomposed
in a number of noninteracting subsystems, one for each Jordan block

N o1 0 ... 0
0 X 1 ... 0
Jh: . . N :
0 0 0 1
0 0 0 A

. . h h .
where ); is the ith distinct eigenvalue of A and J} has dlmensmn. ny X n }mth
n? smaller than or equal to the multiplicity of the eigenvalue A; in t.hfz rmmmfil
pz)lynomial ¥ 4(A). In the case of continuous-time systems, the transition matrix
of each of these subsystems is

t2 t3

1t 5 )]

) 01 t =
e']iht::e/\'t 0 0 1 %

and contains terms of the form t¥e** with k smaller than the multiplicity of the
eigenvalue ); in the minimal polynomial ¥ 4(A). Sipce tkerit tends to zero, as
t — oo, if and only if the real part of A; is negative, it foll.ows that a continuous-
time system is asymptotically stable if and only if all the‘ f:xgenvalues of A have a
negative real part. In contrast, if eigenvalues with a positive real part' exist, some
of the terms of the transition matrix are unbounded and grow e).(ponentlally k=0)
or more than exponentially (¢ > 1). In both cases, the systexp is s-trongbj unstable.
In the remaining cases, that is, when there are zero or purely imaginary elgﬁnva?u'es
Ai- but there are no eigenvalues with a positive real partt one has simple s.tablllty
if the term t*e*"? is bounded (k = 0) and weak instability in the oppo§1te case
(k > 1). By taking into account that k is necessarily zero only in tl}e case in wthh
the eigenvalue A;- with zero real part is a simpl.e root of the minimal polynomml
U 4(A) and noting that in the case of discrete-time sy§tems the efponentlal term
e*it is replaced by the power A, which tends to zero if and only if |A;] < 1, we
can summarize the previous discussion with Theorem 5.
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THEOREM 5 (stability conditions)

A continuous-time  [discrete-time] linear system (A4,b,cT,d) s
a. Asymptotically stable if and only if Re(\;) < 0 [|\;| < 1] Vi

.RC(/\I‘) <0 “/\1[ < 1] Vi
Ji* RC(/\,*) =0 [/\pl = 1]

b. Simply stable if and only if

all A;~are simple roots of ¥4
Re () <O [A| <1 vi
Fi* : Re(Ai=) = 0 [Aie| = 1]

¢. Weakly unstable if and only if

at least one A;-is not a simple root
of ‘I/A
d. Strongly unstable if and only if Fi:Re(A:) > 0 [|\i] > 1]

The system representing Newton’s law (Example 1), which has the matrix A in
Jordan form, has a zero eigenvalue that is a double root of the minimal polynomial.
As previously stated, it is then weakly unstable. The Fibonacei’s system (Example
2) has, instead, two eigenvalue \; 2 = (1 ++/5)/2 so that one of them is > 1 and
the system is therefore strongly unstable.

The n eigenvalues of matrix A of a continuous-time linear system can be divided
into three classes, depending on the sign of their real part: n~ eigenvalues, called
stable, have a negative real part, n® have a zero real part and are called critical,
and n* have a positive real part and are called unstable. Obviously, n = n™ +
n% +n*. The corresponding eigenvectors define three disjoint invariant subspaces
X, X% and X with dimension n~, n%, and nt respectively. Initial states in
the subspace X~ give rise to free motions that tend to zero, while initial states
in the subspace X+ give rise to free motions that tend to infinity at least at an
exponential rate. For this reason, these two subspaces are called, respectively, stable
manifold and unstable manifold. The subspace X° is called center manifold: The
free motions corresponding to initial states in X° remain in X°, do not tend to
zero and eventually tend to infinity at a polynomial rate. Systems without center
manifold (i.e., without critical eigenvalues) are called hyperbolic and are divided
into attractors (X~ = R™), saddles (X~ ®X " = R"), and repellors (X+ = R™).
Systems possessing a center manifold are called nonhyperbolic. F igure B.9 shows
the trajectories corresponding to the free motion of eight different second-order
continuous-time systems. Each figure also shows the two eigenvalues of the system.
The first five systems (stable focus, stable node, unstable focus, unstable node,
saddle) are hyperbolic and the last three are non-hyperbolic. The last system (pure
imaginary eigenvalues) is called center and this explains the choice of the term
“center manifold”.

The advantage of the decomposition of the state space R” into the direct sum
of three subspaces X, X0, and Xt is particularly clear when visualizing the
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P (R N Ty

(h)

Figure B.9 Trajectories corresponding to the free motion of second-order continuous-time
systems: (a) (stable focus) and (b) (stable node) are attractors; (¢} (unstable focus) and
(d) (unstable node) are repellors; (e) is a saddle; (f), {g), and (h) (center) are systems
with center manifold X°. The straight trajectories correspond to eigenvectors associated to
real eigenvalues. The double arrow indicates parts of the trajectories where the state of the
system moves more rapidly.

geometry of the free motion, in particular for third-order systems, as the two saddles
shown in Fig. B.10.

Obviously, what has been said for continuous-time systems also holds for discrete-
time systems when separately considering the cases in which we have stable eigen-
values (|A;| < 1), critical (JA;] = 1), and unstable (|A;] > 1).

B.12 TESTS OF ASYMPTOTIC STABILITY

In Section B.11, we showed that knowing the eigenvalues of matrix A of a linear
system one can establish whether such a system is asymptotically stable (or not).
Unfortunately, the computation of the eigenvalues of a matrix can be very onerous
if the matrix is large, as it is often the case in real applications. For this reason,
it is convenient to use some tests or methods that, avoiding the computation of the
eigenvalues, allow us to infer the asymptotic stability or instability of a system.
One of the most popular of such tests, which is a sufficient condition for in-
stability, is the trace criterion, which states that a continuous-time [discrete-time]
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(a) ©)

Figure B.10 Two third-order saddles: (a) n™ = 1,n* =2; () n™ =2, nt = 1.

system of dimension 7, has the trace of its matrix A positive [> 7 in modulus],
then the system is unstable. For proving this theorem it suffices to remember that
the trace of a matrix equals the sum of its eigenvalues.

A condition that requires a much greater computational burden (but is still more
effective than the computation of the eigenvalues) is known as the Hurwitz criterion.
Such criterion (whose proof is not reported here) is a necessary and sufficient
condition for the 7 roots of a polynomial equation with real coefficients

WA+ A" b, =0

to have a negative real part. When applied to the characteristic equation A 4(A) = 0,
which can be determined using the Souriau method cited in section B.3, the criterion
allows one to establish whether a continuous-time system is asymptotically stable
or not.
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THEOREM 6 (Hurwitz criterion)

Let
AaQ) =N+ A"+t

be the characteristic polynomial of a continuous-time linear system £(t) =
Az(t). Consider the following n x n matrix (called the Hurwitz matrix)

a1 1 0 0
ag o oy 1
H=] & ® &3 @2

Qa7 (g Q5 (4

in which o; = 0 for ¢ > n. Then, a necessary and sufficient condition for
asymptotic stability of the system is that all the principal minors of the Hurwitz
matrix be positive. That is, setting

a 1 Qg 1 0
Di=ay Dy=det(5 az)Dg,:det(gg o2 g;)...Dn:def,H

a necessary and sufficient condition for asymptotic stability of the system is
that D; > 0,i=1,...,n.

Another important criterion for asymptotic stability, equivalent to the Hurwitz cri-
terion, is the following:

THEOREM 7 (Routh criterion)
Let

AsN) =N+ X" T+ ta,

be the characteristic polynomial of a continuous-time linear system Z(t) =
Az(t). Consider the (n+ 1) x (n + 1) matrix (called the Routh matrix)

1 ay oy

oy az  as

T21 T22 723

R= 731 T32 733

Tni Tn2 Tn3
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in which

an+i =0 for i=1,2,...

Q2541
T2 = Qg5 — —al
Ti—2,17Ti—1,5+1 .
Tij = Tiig a1 — —— LML for =34,

Ti—-1,1

(note that r;; can be computed only if r;_1; # 0). Then, a necessary and
sufficient condition for asymptotic stability of the system is that all the entries
of the first column of R be positive.
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THEOREM 8 (Jury criterion)

Clearly, there exist criteria for asymptotic stability for discrete-time systems analo-
gous to the Hurwitz and Routh ones. It is worth noting, however, that by means of
the change of variables '

one can transform the problem of checking whether the zeros of a polynomial in 2z
are within the unitary circle to that of checking whether the zeros of a polynomial
in s have a negative real part. In other words, if

Aa(z) =det(zl — A) = 2"+ 12" 1+t a,

is the characteristic polynomial of a discrete-time system z(¢t + 1) = Az(t), one
can write the characteristic equation in the form

s+1\" s+1\"?
+ o +doy, =0
s—1 s—1

which yields
"t ays" T b e, =0

By applying the Hurwtitz or Routh criterion to this equation, one can determine
whether the discrete-time system is asymptotically stable or not.
However, we report next one of the most popular criteria for asymptotic stability of
discrete-time systems.

Let )
AN = A"+ A" A+ an

be the characteristic polynomial of a discrete-time system z(t 4+ 1) = Aac(t)
Consider the following table of dimension 2n x (n + 1) composed of n pairs

of rows:

P11 P12 -+ Pin Pln+l
g1 q1i2 -+ din qin4l
P21 P22 Pan
g21 q22 2n
Pn1  Pn2
gnl  9n2
where
a. The elements of the first Tow are cn, Gn_1,- - -, 01, 1, that is, the coefficients

of the characteristic polynomial are in reversed order.
b. Each even row coincides with the preceding row in reversed order.

c. The elements pj; can be calculated as follows:

Pj1 4ji

)j:LZ”qn—l
41 Dji

Pj+1,4 = det (

Then, a necessary and sufficient condition for asymptotic stability of the system
is that the following conditions hold:

As(1) >0  (-1)"Au(-1)>0
par <0  pin1>0,7=234,...,n

In the particular case of second-order systems (matrix A of dimejn_sion 2 % 2),
special conditions hold that often allow us to check asymptotic stability by simple
inspection of the matrix A.
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THEOREM 9 (trace and determinant criterion)

A second-order continuous-time system £(t) = Az(t) is asymptotically stable
if and only if
trA<0 detA>0

Analogously, a second-order discrete-time system z(t + 1) = Az(t) is asymp-
totically stable if and only if

rd] < 1+detA detA<1

The reader may check the efficacy of this criterion by applying it to the systems
described in the Examples 1 and 2.

B.13 ENERGY AND STABILITY

It is known that in some systems (e.g., electrical and mechanical ones) it is possible
to define a function of the state V' (z(t)), called energy, which has the property to
be quadratic and nonnegative and decreases with time (and tends to zero) whenever
the system is asymptotically stable and evolves freely. This property, studied by the
Russian mathematician Alexander Liapunov (more than a century ago), allows us
to analyze the stability of any linear system in a very synthetic and elegant way.

In order to introduce this topic, we need to define positive definite matrices.
First of all, we say that a function V' (z(t)) with z € R™ is quadratic if

V(z) = 2T Pz

where P is an n x n matrix. This means that V(z) is a weighted sum of all the
products z;z;. Since the weight of the term z;x; is (pi; + pji), there is no loss
of generality in assuming that the matrix P is symmetric. Moreover, a matrix P is
said to be positive definite if the associated quadratic form =7 Pz is positive for
all the vectors x % 0. To know whether a given matrix P is positive definite, one
can apply the following criterion:

THEOREM 10 (Sylvester criterion)

A symmetric matrix P is positive definite if and only if all the principal minors
Dy, Do, ..., D, are positive, that is,

Dl:P11>0 D2:det(p11 p12)>0

D21 Do D, =detP >0

It is clear from the previous discussion that any positive definite matrix P induces
a metric in the space R™: in other words, V(z) = 27 Pz can be interpreted as the
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distance of point z from the origin. In this metric, the points z at the same distance
from the origin lie on the manifold ¥ Pz = constant, which in R? is an ellipse.

Suppose now that a positive definite matrix P is associated to an autonomous
continuous-time linear system #(t) = Az(t). The “distance” of the point z(t) from
the origin is V(z(t)) = 2T (t)Pz(t) and such a distance varies in time since z
depends on t. More precisely

V =iPr+2TPi=2TATPx+zTPAx
= 2T(ATP + PA)z

so that the distance of z(t) from the origin decreases continuously with time (V < 0)
if the matrix —(AT P + PA) is positive definite, that is, if the so-called Liapunov
equation

ATP4+PA=-Q (B.26)

is satisfied with Q positive definite. Obviously, if this equation holds, then the
system is asymptotically stable since the free motion of the system asymptotically
tends to zero, since V < 0 for # 0.

In the case of discrete-time systems z(t + 1) = Az(t), one has to determine the
quantity AV defined as

AV =V(z(t+1)) = V(z(t)) = (Az(t))T PAz(t) — =7 (t)P=(t)
= 2T (t)(ATPA — P)z(t)
so that the discrete-time Liapunov equation is the following:
ATPA-P=-Q (B.27)

In conclusion, if a continuous-time [discrete-time] system satisfies the Liapunov
equation (B.26) [(B.27)] with P and Q positive definite matrices, the system is
asymptotically stable and the function V(z) = z” Pz, called the Liapunov function,
has the properties of any energy function, that is, it is positive and decreasing with
time for = # 0. Clearly, this does not imply that, given an asymptotically stable
autonomous system in which z(¢) tends toward the origin as ¢ — oo, any quadratic
function V(z) = zT Pz with P positive definite systematically decreases with
time (even though V tends to zero as t — oo). This fact is illustrated in Fig.
B.11 for a second-order continuous-time system (stable focus). In such a system,
V(z) = TPz is positive definite, but V = zT(ATP + PA)z is positive at
some points and negative at others, so that V' tends to zero as t — oo but not
monotonically. ’
The above discussion is further specified in the following theorem.
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V(a)<0
z, Wb)>0
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Figure B.11 Second-order asymptotically stable autonomous system (stable focus): (a)
trajectory (—) and contour lines (...) of the function V(z) = z7 Pz; (b) time evolution of
V.

THEOREM 11 (Liapunov theorem)

A continuous-time [discrete-time] linear system (4, —,—) is asymptotically
stable if and only if there exists a quadratic function V(z) = zTPz with
P positive definite, which is strictly decreasing in time (i.e., such that V <
0 [AV < 0]) along the free motion of the system with x # 0. Moreover, such
a function exists if and only if the Liapunov equation (B.26) [(B.27)] admits a
solution (P, Q) with P and Q positive definite. Finally, if such a pair (P, Q)
exists, then one can find an infinite number of them, one for each positive
definite matrix Q.

The last statement of the Liapunov theorem allows one to derive a practical
criterion for testing if a linear system is asymptotically stable. If we chose any
symmetric and positive definite matrix @ in the Liapunov equation [e.g., Q@ = T
(identity matrix)], one can solve the equation in the unknown P [note that if P is
symmetric there are n{n+1)/2 linear equations in the same number of unknowns];
if the solution P exists and is positive definite (this can be checked using Sylvester
criterion) the system is asymptotically stable.

It is worth noting that the Liapunov theorem does not require any particular
structure for the matrix P. Often, however, the matrix P is diagonal, that is, the
Liapunov function V(z) does not contain mixed terms z;x; with i # § (as an
example, consider the energy function of an electrical network). If this is the case,
that is, when the Liapunov equation admits a solution (P, Q) with P and Q positive
definite and P diagonal, the system, besides being asymptotically stable, remains
such for any structural perturbation (Arrow-McManus theorem). This means that,
if there exists a diagonal matrix P with pii > 0, i = 1,...,n such that the
matrix —(ATP + PA) is positive definite, we can assert that the system & = Az
is asymptotically stable as well as all other systems of the kind z = DAx with
D diagonal and d;; > 0. In other words, the system £ = Az is asymptotically
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stable and remains such under the effect of any perturbation that resuits in the
multiplication of any one of its state equations by a positive arbitrary constant.

B.14 DOMINANT EIGENVALUE AND EIGENVECTOR

The free motion z(t) = ®(t)x(0) of a linear system is completely identified by the
transition matrix

o(t)=1 ¢ for continuous-time systems
At for discrete-time systems

Recalling what has been previously stated about eigenvectors, eigenvalues, and the
Jordan canonical form of a matrix A, we can conclude that in the case of real and
distinct eigenvalues the free motion is

S ccz@eMt  for continuous-time systems
=) = n () xt

where z(?), ¢ = 1,...,n are the eigenvectors of A [satisfying the equation Az(") =
A:z®] and ¢; are the components of the initial state z(0) in the basis composed
of the n eigenvectors z() [i.e., 3 7 ; c;z() = z(0)]. Clearly, for particular initial
conditions, some ¢; may be zero, but for generic initial conditions, all the ¢;’s are
different from zero and the free motion is the weighted sum of n exponential terms.
As time passes, one of these exponential terms necessarily dominates the other
since, for large values of ¢, e* >> e** [IXF] >> AL} if A > X {1\ > ]
(notice that this occurs also in the case of simple stability or instability). The eigen-
value and eigenvector associated with this exponential term are called dominant.
The dominant eigenvalue Agom is clearly the highest eigenvalue in continuous-time
systems and the eigenvalue with maximal modulus in discrete-time systems. In Fig.
B.9, five cases {(b), (d), (e), (f), (g)] deal with continuous-time systems with real
eigenvalues. They show that all generic trajectories tend to align with the dominant
eigenvector as time passes. This property is very important and must be accounted
for when characterizing the asymptotic behavior of linear systems. Therefore, the
free motion can be approximated in the long run with a single exponential term

for discrete-time systems

cTgome™dom®  for continuous-time systems
;L‘(t) =

CTgomAbyy  for discrete-time systems

and if the system is asymptotically stable, this exponential term tends to zero. In
these cases, the exponential term is often written in the form e~%/Tdom, where
Toom(> 0) is the so-called dominant time constant, linked to the dominant eigen-
value by the relationship

__1
Adom

for continuous-time systems

Tdom = 1 . .
——+—— for continuous-time systems
log]AdomI
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Moreover, in applications it is rather conmon to say that the exponential term is
“practically” over after a period of time equal to five times the time constant Tiop.
If the eigenvalues of A, though distinct, are not all real, the free motion is also
characterized by terms of the form e and A? with A complex. In the continuous-
time case, these terms correspond to an exponentially dumped sinusoidal function
e** sin(bt + ), where a is the real part of the eigenvalue and b is the imaginary
part. It follows that the dominant term of the free motion is the one associated with
the (real or complex) eigenvalue with the maximal real part. In conclusion, in the
long run, the free motion can be approximated by an exponential if the dominant
eigenvalue is real, or by a sinusoid with an exponentially varying amplitude if the
dominant eigenvalue is complex. Obviously, in the case of asymptotically stable
continuous-time systems the dominant time constant is given by

1
Tdom Re ( /\dom)
Finally, if the eigenvalues of A are not all distinct, the free motion of a continuous-
time [discrete-time] system may contain terms of the form t*e** [t*)!]; this fact,
however, does not change the previous conclusions, since the free motion is still
dominated by the term associated with the (real or complex) eigenvalue with max-
imal real part [maximal modulus].

B.15 REACHABILITY AND CONTROL LAW
The motion of a linear system is given by

z(t) = 2(t)z(0) + ¥ (t)uqo,4 (")
that is, the sum of the free and forced motion. The forced motion

f(f eAt=py(£)dé  for continuous-time systems
Y(@upn()=4 ., |
Yoo AP bu(d)  for discrete-time systems

describes the set X, (t) of all states reachable from the origin of the state space at
time ¢. Obviously, such a set is a subspace for which the following property holds

XT(tl) C Xr(tz) t1 < to

Since X,(t) cannot groW indefinitely, there exists a time t* such that X, (¢) = X,
for ¢ > t*. Finally, if X, = R", the system is said to be completely reachable.
Theorem 12, known as the Kalman theorem, holds.
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Figure B.12 Two reservoirs fed in parallel.

THEOREM 12 (complete reachability)

In a linear system (A, b} of order 7, the reachability subspace X is spanned by
the n vectors b, Ab, ..., A" b, called reachability vectors. Thus the system
is completely reachable if and only if these n vectors are linearly independent.
Moreover, each state belonging to X,. is reachable in any time if the system is
continuous-time and in at most n transitions if the system is discrete-time.

This theorem is often formulated by making reference to the reachability matrix
(also called the Kalman matrix)

R=(b Ab ... A"1b)
This matrix is » x n and its image is the reachability subspace, that is,
X, =I|R]

so that the complete reachability of the system is equivalent to the nonsingularity
of the matrix R (i.e., to the existence of R™1).

ExaMpPLE 6
Consider the system shown in Fig. B.12 composed of two reservoirs i = 1,2 feed
in parallel with a flow u(t)/2 and with an output flow-rate proportional (through a
coefficient k;) to the storage z;(t).

The conservation of mass gives

u
o= —k —_
3 1Ty + 3
uw
] —-k —
) 2T + 5

which are the state equations of a linear system with

(8 8 =)
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Thus, the reachability matrix is

(12 <k/2 )\
R= ( 1/2 —ky/2
so that the system is complete reachable if and only if k1 # k3. The reason for this
is that in the case of identical reservoirs (& = ko) it is impossible to unbalance

the system [z1(t) # z2(t)] since, by assumption, the initial condition is balanced
[x1(0) = z2(0) = 0). '

&

It is worth noting that all systems with A = A,, b= b,, where

0 1 0 e 0 0

0 0 1 ... 0 0

A=) 0 L : be=|
0 0 0 R | 0

—0y ~Qp_y —-Otn_2 ¢ 5] 1

that is, all systems in control canonical form (see Section B.3) are completely
reachable. In fact, it is immediate to check that the Kalman matrix

Re=(b. Agb. ... A "1b, )
is nonsingular for all values of the coefficients c;, 7 = 1,2,...,n and that
Qp-1 Qp_2 ... a1 1
QAp-2 Qp_3 ... 1 0
R = : : Do
1 0 ... 0 0

The reason for the interest in this canonical form is justified by Theorem 13.

THEOREM 13 (control canonical form)

A completely reachable system (A4, b) can be put in control canonical form by
means of the coordinate transformation z= R.R™ 1z, where R and R, are the
reachability matrices of (A, b) and (A, b.).

This means that any system (A,b) can be assumed to be in control canonical
form provided it is completely reachable. Moreover, the control canonical form
(Ac, b.) can be easily determined by evaluating (e.g., with the Souriau formula) the
coefficients «;.

The importance of complete reachability emerges whenever one tries to modify
the dynamics of a given system by linking its input u(t) to the state x(t) by means
of a linear feedback rule

u(t) = kTz(t) + v(t)
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Ab ——

£ S

Figure B.13 Controlled system composed of a system (A, b} and its controller 7.

known as the control law (algebraic and linear). The resulting system, called the
controlled system, has v(t) as input, and is shown in Fig. B.I13 through a block
diagram. The feedback block, called controller, performs a simple weighted sum
kizy + ... + knzy, (= kT2(t)) of the state variables.

If (A, b) is a continuous-time system, then the controlled system is described by
the state equations

&= Az +b(kTz +v) = (A + bkT)z + bv

In other words, the system (A, b) is transformed, by means of the feedback controller
k7, into the controlled system (A + bk7, b). Thus, the dynamies of the system are
now different since the characteristic polynomial has been modified from A a(A)
into A 4,57 (X). Obviously, the same holds for discrete-time systems. We can
now present the main theorem of this section. It states that complete reachability is
a necessary and sufficient condition for the free assignment of the eigenvalues of
the controlled system.

THEOREM 14 (eigenvalue assignment)

The eigenvalues of the controlled system (A + ka) can be arbitrarily assigned
by means of a controller k7, if and only if the system (A, ) is completely
reachable. If a; are the coefficients of the characteristic polynomial of A, and
af those of the characteristic polynomial of A + k7, then

k' = ((an —a) ... (&1 — oF))R.R™!

where R and R, are the reachability matrices of (A4, ) and (A, b.).

Theorem 14 implies that the dynamics of a completely reachable system can be
modified at will through a linear feedback. The most spectacular consequence of
this theorem is the possibility of stabilizing unstable systems.

Since complete reachability is a generic property of linear systems [detR #0

for a generic pair (A4, b)], it can be understood that the control scheme shown in

Fig. B.13 is of great practical interest.
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B.16 OBSERVABILITY AND STATE RECONSTRUCTION

The observability of a dynamical system refers to the possibility of computing its
initial state 2(0) once input and output have been recorded during time interval
[0,%). Analogously, reconstructability refers to the possibility of computing the
final state z(t). Thus, observability implies reconstructability, since once x(0) and
u[o,;)(-) are known, it is possible to compute z(t) (Lagrange’s formula), while the
inverse is possible only if the system is reversible.

In order to study observability, it is worth considering the output free motion of
the system

cTeAtz(0) for continuous-time systems

T ot)z(0) = {

cTA*z(0) for discrete-time systems

and define the set Xy,o(t) of the states indistinguishable from the origin as the set
of the initial states z(0) for which the output free motion is identically zero in the
interval [0,¢). Obviously, such a set is a subspace enjoying the property

Xno(tl) o Xno(t2) tl S t2

But X, (t) cannot decrease indefinitely, so that a time t* exists such that X, (t) =
Xno for ¢ > ¢*. Finally, if X, = {0}, all states z(0) # 0 are distinguishable from
the zero state and can be computed from (g +)(-) and yjo 4 (). This is the reason
why a system with X, = {0} is called completely observable. It is customary to
consider also the subspace X 1., that is, the subspace orthogonal to Xp,. This sub-
space, called the observability subspace and denoted by X, is useful for explicitly
formulating the condition of complete observability.

THEOREM 15 (complete observability)

In a linear system of order n, the observability subspace X, is spanned by the
n vectors ¢, ATc, ..., (AT)" ¢ called observability vectors. Thus, the system
is completely observable if and only if these vectors are linearly independent.
Moreover, in a completely observable system the initial state can be computed
if input and output have been recorded for a time period of any length in the
case of continuous-time systems and of length n in the case of discrete-time
systems.

The above condition is often formulated with reference to the observability matrix
(also called the Kalman matrix)

Then, we have
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Xno = N[0O] X, =Z[O7T]

and a system is completely observable if its observability matrix is nonsingular (i.e.,
if the matrix O~ ! exists). The fact that the initial state of a completely observable
system can be computed from input and output records can be verified by explicitly
writing the first n output values as a function of the initial state and of the input
value, that is,

y(0) = cTz(0) + du(0)
y(1) = T Az(0) + cTbu(0) + du(1)
y(2) = T A2z(0) + T Abu(0) + cTbu(1) + du(2)

y(n —1) = cTA" 12(0) + T A" 2bu(0) + - - - + cTbu(n — 2) + du(n — 1)

This is a system of n linear equations with n unknowns [the components of the
vector z(0)] which admits a unique solution if and only if the observability matrix
O is nonsingular.

ExAaMPLE 7

Suppose that 10 pairs of adult rabbits have been captured at the beginning of the
season in a population described by the Fibonacci model (see Example 2) and
assume that at the beginning and at the end of the same year 50 and 60 pairs of
rabbits (young and adult) where present. This means that

w(0) =10 y(0) =50 y(1)=60
Since the system is described by the triple

a=(¥ 1) o=(2)

cF'=(11)

T

c 11
OZ(CTA>:(1 2)
so that the system is completely observable and

or=(4a 1)

we have
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Thus, the system of 2 equations and 2 unknowns
y(0) = ¢"=(0)
y(1) = T Az(0) + cTbu(0)

can be solved with respect to z(0)

-0 () " )73 1) (B)=(B)

y(1) — cTbu(0)

We can, therefore, conclude that at the beginning of the year the population was
composed of 30 pairs of young rabbits and 20 pairs of adult rabbits.

&

The comparison of Theorems 12 and 15 allows one to note a strong analogy
between reachability and observability, which can be formalized in the following
duality principle:

THEOREM 16 (duality principle)

A system X is completely reachable [observable] if and only if its dual £* =
(AT, ¢, b7, d) is completely observable [reachable]. Moreover, the reachability
matrix of the system is the transposed of the observability matrix of the dual
system.

The duality principle enables us to obtain from Theorem 13 and from the prop-
erties of the control canonical form, the following result:

THEOREM 17 (reconstruction canonical form)

A system in reconstruction canonical form

00 ... 0 -—a,

1 0 ... 0 —ap
Ar-——- 01 ... 0 —Op_9

00 ... 1 -
f=(00 ... 0 1)

is completely observable. Conversely, a completely observable system (4, c¢T)
can be put into reconstruction canonical form by means of a suitable coordinate

transformation.

Also, Theorem 14 on eigenvalues assignment can be dualized. For this, we first
introduce the notion of state reconstructor, illustrated in Fig. B.14.
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u system
(A.b,¢",d)

Figure B.14 A system and its state reconstructor.

The reconstructor is a copy of the system [with state &(t)] with two inputs: the
input u(t) of the system and the difference [§(t) — y(t)] between the reconstructed
output j(¢) and the output of the system. The vector I identifies the reconstructor
uniquely, and will be assumed to be constant in time. Thus, if the system is
continuous-time, that is,

2(t) = Az(t) + bu(t)
y(t) = cTz(t) + du(t)
the time invariant reconstructor is described by
3(t) = A#(t) + bu(t) + 1(3(2) - y(2))
§(t) = cT2(t) + du(t)

If the reconstruction error is the difference between the state &(t) of the recon-
structor and the state z(t) of the system

e(t) = &(t) — z(t)

it is straightforward to check that

é(t) = (A+1c)e(t) (B.28)

and this means that the dynamics of the reconstruction error [Eq. (B.28) with initial
state e(0) = £(0) — z(0)], are independent upon the input applied to the system.
In the case of discrete-time systems, Eq. (B.28) simply becomes

e(t+1) = (A +1c)e(t) (B.29)

so that, we can conclude that the reconstructed state &(t) tends toward the state of
the system z(t), for any initial error £(0) — z(0), if and only if the system (B.28)
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or (B.29) is asymptotically stable. If this is the case, we say that the reconstruc-
tor ! is an asymptotic state reconstructor. Clearly, the rate of convergence of the
reconstructed state Z(t) toward z(t) is determinated by the dominant eigenvalue
of the matrix A + lc*. In this context, the following result, which is the dual of
those concerning the assignment of the eigenvalues of the controlled system, if of
interest.

THEOREM 18 (eigenvalues of the reconstructor)

The eigenvalues of the matrix A+1cT, which describes the reconstruction error
dynamics (B.28) or (B.29), can be arbitrarily fixed by means of a suitable choice
of the vector I, if and only if the system (A, cT) is completely observable.

This result states that it is possible to rapidly and precisely reconstruct the state
of a completely observable linear system by elaborating its inputs and outputs in
real time. Since complete observability is a property that holds generically for a
linear system, one can argue that the scheme of Fig. B.14 is of great interest in
applications.

B.17 DECOMPOSITION THEOREM

The notions of reachability and observability enable us to interpret any linear system
as the interconnection of four subsystems called, respectively,

a. Reachable and unobservable part (r,no0).
b. Reachable and observable part (r,0).
c. Unreachable and unobservable part (nr,no).

d. Unreachable and observable part ().

If the dimension of the system is n and 74,7, e, and ng are the dimensions of
the four parts, obviously

n="ng+np+nc+nNg

A system is rarely composed of the four parts. In contrast, very often a system is
composed only of part b: This happens when the system is completely reachable
and completely observable. The interactions among the four subsystems X, ¥p, Zc,
and X4 are pointed out in Fig. B.I5 where, for simplicity, we have assumed that
the system is proper (d = 0).

The figure shows that the input u directly influences parts a and b but does
not influence even indirectly, the parts ¢ and d. This means that if the subsystems
(c) and (d) are initially at rest [z.(0) = 0,z4(0) = 0] they will remain at rest
forever. On the contrary, the state vectors 2z, and 2z, of the first two parts, may
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~

a

Ab, —
A, O
(-
A Z v
L__ +
A, N

Figure B.15 A proper system decomposed in parts.

vary since they are influenced by the input. Moreover, the decomposition theorem
(due to Kalman) states that the system composed of the first two parts is completely
reachable. The figure shows also that the output is influenced by the input through
part b, which is, therefore, the only channel through which the information flows
from the input to the output of a dynamical system. The output is also influenced
by part d but is completely insensitive to what is going on in parts a and ¢: This
means that it will not be possible to compute the initial state of parts a and ¢, from
the knowledge of the input and output functions. However, this will be possible
for parts b and d, which compose a completely observable system.

THEOREM 19 (decomposition theorem)

Given a linear system (4, b, ¢T), it is possible to perform a change of state vari-
ables z = Tz in such a way that the equivalent system (T AT ™', Tb,cTT—1)
is decomposed into four parts (as shown in Fig. B.15), that is,

J%a. fjlqab Aéxc ﬁad ba
-1 _ b b
AT"=1 0 0 A 4u | T={ ¢

0 0 0 A4 0

T 1=(0 & 0 )

with the following properties. System ( Ay, by, cg) is completely reachable and
observable, while system (A, b, cl') given by

(&) we (k)

I=(0 )
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is completely reachable and system (A,, b,, c2) given by

A= (o A ) w=(7%)
S=(d o)

(]

is completely observable

The proof of Theorem 19 is constructive. It suggest the following procedure for
the computation of the coordinate transformation 7.
Decomposition procedure

1. Compute the reachability and observability matrices R and O of system
(4,b,c7).

2. Determine the four subspaces
X, =7T[R] X, =T{07]
Xar = N[RT] X0 = N[0]
3. Determine the four subspaces (i. e., their basis)
Xa=X:NXy
Xp = X N (Xor + Xo)
Xeo = Xno N (Xnr + Xo)

Xd - an n*Xﬁ‘

4. The columns of the matrix 71 are the vectors of the basis of the four
subspaces determined at step (3).

5. Determine T = (T1)~! and (TAT ™!, Tb,cTT—1).

It is important to note that the four parts composing a linear system, though
interconnected one to the other, do not form cycles, as pointed out by Fig. B.15
and by the block triangular structure of the matrix TAT ™. This implies that
the eigenvalues of the system are the union of the eigenvalues of the four parts
or, equivalently, that the characteristic polynomial of the system is the product of

the characteristic polynomials of the four parts. For this reason, many properties of

linear systems are linked to the stability of one or more of its parts. We now confirm
this by discussing three properties of linear systems: stabilizability, detectability,
and external stability. ‘

The first property, stabilizability, concerns the possibility of transforming a given
system (A,b,cT,d) into an asymptotically stable system, using a linear control
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law. Assuming that the system is decomposed into its four parts with state vectors
Za, 2b, Zc, and zq, the linear control law becomes

u(t) = kI za(t) + ki 20(t) + kL 2:(8) + kT 24(t)

By looking at Fig. B.15 it is clear that such a control law does not modify the
dynamics of parts ¢ and d, whose eigenvalues remain eigenvalues of the controlled
system. For the system (A4, b, cT, d) to be stabilizable, it is then necessary that its
parts ¢ and d be asymptotically stable. But, this condition is also sufficient since,
parts a and b compose a completely reachable system so that from Theorem 14 it
follows that their eigenvalues can be modified at will. In conclusion, the following
result (Theorem 20) holds:

THEOREM 20 (stabilizability condition)

A system is stabilizable if and only if its unreachable parts {c and d) are
asymptotically stable.

A dual result holds for the so-called detectability, namely, for the possibility of
reconstructing, at least asymptotically, the state of a system by means of a linear
time-invariant reconstructor.

THEOREM 21 (stabilizability condition)

A system is detectable if and only if its unobservable parts (a and c¢) are
asymptotically stable.

This result can be understood by a simple inspection of F ig. B.15. In fact, since
parts b and d compose a completely observable system, their state variables zp(t)
and z4(t) can be reconstructed from the input and output functions (see Theorem
18). But then, the inputs w(t), z,(¢) and 24(t) of the system composed of parts a
and ¢ are known so that the forced motion of such a system can be computed. But,
if the parts a and ¢ are asymptotically stable, the forced motion tends, as time goes
on, toward the state vectors z,(t) and z.(t), so that, in conclusion, the system is
detectable.

We now give the definition of external stability, also known as bounded input
bounded output (BIBO) stability.

DEFINITION 3 (external stability)

A linear system is externally stable if its forced output is bounded for any
bounded input.

From Fig. B.15, one can readily see that external stability is a property of part b
of the system, since the forced motion is characterized by z.(t) = 0 and 24 (t)y =0,
while part a gives no contribution to the output. It is not surprising, then, that the
external stability of a system is equivalent to the asymptotic stability of its part b
as stated in Theorem 22.
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Figure B.16 Observable parts b and d of a system.

THEOREM 22 (external stability condition)

A system is externally stable if and only if its reachable and observable part is
asymptotically stable.

This result is due to the fact that only part b is responsible for the relationship
between input and output whenever the system is initially at rest. If the initial state
is nonzero, the output depends also on part d, which gives, however, a bounded
contribution if it is simply or asymptotically stable. In conclusion, the output of
a linear system is bounded for any initial state if and only if its reachable and
observable part b is asymptotically stable and its observable and unreachable part
d is stable.

B.18 DETERMINATION OF THE ARMA MODELS

We can now be more precise on the problem dealt with in Section B.3, namely,
the determination of the ARMA model of a given system (A,b,cT,d). For this,
recall that an ARMA model is the pair of polynomials [N(p), D(p)] identifying the
input-output equation (B.8), which is the difference equation (B.6) in the discrete-
time case and the differential equation (B.7) in the continuous-time case. Recall
also that the ARMA model is said to be reduced if the polynomials N (p) and D(p)
are coprime. Moreover, the ratio between N (p) and D(p) is the transfer function
of the system denoted by G(p), that is,

60 = p

Obviously, the ARMA model [N(p), D(p)] and the transfer function G(p) are not
equivalent unless the ARMA model is reduced. Since the ARMA model represents
the relation between input and output in the general case of a nonzero initial state,
it must be associated with the observable parts b and d of the system, which, for
the sake of clarity, are depicted in Fig. B.I6.
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The first subsystem with output v is described by the (multiple inputs) ARMA
model

Ao (P)us(t) = No(P)u(t) + N} (p)zar (8) + Ny (p)za2(t) + - - (B.30)
where Ay(p) is the characteristic polynomial of Ay and 2za1(t), za2(t), and so on,

are the components of the state vector zq(t). The second subsystem with output y4
has no input and is therefore described by the AR model

Au(p)ys(t) = 0 B.31)
where A4(p) is the characteristic polynomial of A4. Moreover, since each compo-

nent of the state vector z4(t) can be interpreted as an output of the second subsystem,
we have

Ag(p)zai(t) =0 i=1,2,...,n4 (B.32)

If Egs. (B.30) and (B.31) are multiplied by Aa(p) and Ay(p), respectively, and
then summed up, the resulting equation in view of Eq. (B.32) becomes

Ap(p)Aa(p)y(t) = No(p)Aa(p)u(t)

where y(t) = ys(t) + ya(t). Thus, the ARMA model of the system is not reduced,
since

D(p) = Ao(p)Aa(p)

and

N(p) = Ns(p)Aa(p)
are not coprime.

If part d is missing, that is, if the system (4, b, cT, d) does not have the unreach-
able and observable part, then Ay(p) = 1 and the ARMA model

Ap(p)y(t) = Np(p)u(?)

is reduced, since Ay (p) and Np(p) are coprime (part b being completely reachable
and observable). We can then conclude this section stating Theorem 23.
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Figure B.17 A simple hydraulic system.

THEOREM 23 (characterization of the ARMA model)

The ARMA model [N(p), D(p)] of a system (A4, b, T, d) is the ARMA model
of the system composed of its observable parts (b and d) and

N(p) = No(p)Aa(p) D(p) = As(p)Au(p)

where [Ay(p), Np(p)] is the ARMA model of the reachable and observable part
and Ag(p) is the characteristic polynomial of the unreachable and observable
part (equal to 1 if such a part is missing). Then, the ARMA model of a system
is in reduced form if and only if the system does not have the unreachable
and observable part. Moreover, the transfer function G(p) = N(p}/D(p) of
the system is the transfer function G,(p) = Ny(p)/As(p) of the reachable and
observable part.

ExXAMPLE 8
Consider the hydraulic system represented in Fig. B.17 composed of a lake with
two inflows, one with flow rate u(t) (discharge of a plant) and the other kyz1(t)
[melting of a snow-pack of volume z1(2)].

If the flow rate of the effluent is assumed to be proportional through a coefficient
kg to the water storage z2(t) of the lake, the mass conservation law gives

.’i;l = —kll‘l
i‘z = klxl o kzwz +u

Thus, if one considers the flow rate of the effluent as output variable y(t), the
system is described by the triple

A= (G ) e (1)

T=(0 ky)
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Such a system is completely observable but not completely reachable since the
variable z; cannot be influenced. The system is therefore composed of part b
(lake) and part d (snow-pack) as depicted in Fig. B.I16. Since the eigenvalues of
A are —k; (snow-pack) and —k; (lake) we have

Bp(s) = (s+k2) No(s)=ka Aq(s)=(s+k1)

so that
D(s) = (s + k1)(s + k2) N(s) = ka(s + ki)

In conclusion, the flow rates u(¢) and y(t) are linked by the second-order differential
equation
§(t) + (k1 + k2)y(t) + k1kay(t) = k2i(t) + kikau(t)

In contrast, if the snow-pack is missing, the model becomes
U(t) + kay(t) = kau(t)
which is a reduced ARMA model.
&

In many cases of practical interest, the model of the system (A4, b, ¢¥, d) is not
known, but a pair u(-),y(-) of input and output records of length 7' is available.
This is, for example, the case of a river basin in which rainfall and outflow have
been recorded for a period of a few months. Another example is the case of an
electrical amplifier in which the input and output signals have been measured for
some seconds. In these cases, it is interesting to know if it is possible to determine
the model (4, b,¢T,d) of the system by processing the recorded input and output
data. This problem is known as identification of the model and is of paramount

-importance in applications. Very often a solution is obtained by assuming that input

and output measurements are affected by noise, and by using suitable notions of the
theory of stochastic processes. However, the problem is theoretically and practically
interesting even in the absence of noise. For this assume, that the system is proper
and discrete-time and that the dimension n® = ny, + ng of its observable part is
known. Under these assumptions, the ARMA model of the system is

y(t) = —aay(t = 1) = - = anoy(t — n%) + Brut — 1) + -+ + Baou(t — n°)

which can be written in the more compact form

y(t) = (ko) o+ (ulTLe) " B (B.33)
where
431 Bi y(t—1) u(t — 1)
R R = G =
Qo Bro y(t —n°) u(t — n°)
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Suppose, now, that a recorded time series composed of N input and output values
u(0),u(1),...,u(N - 2),u(N — 1)
y(O), y(1)7 sy y(N - 2)7 y(N - 1)

is known and write Eq. (B.33) in the 2n° unknowns «; and 3,2 =1,...,n°, for
N — n° successive values of ¢, that is, for £ = n°,n° +1,..., N — 1. This leads
to the following system of N — n° linear equations in 2n° unknowns:

o_ T o_ T
—(vp 1) (g ) y(n®)
T T o
) (1) a y(n® +1)
- T - T N-—-1
S R T vy
This is an algebraic linear system of the kind
Fp=1v}, (B.34)

where p is the unknown vector of parameters «; and (; identifying the ARMA
model and F is an (N — n°) x (2n°) matrix depending on the input and output
data. By excluding special critical cases, this algebraic system can be solved if

N > 3n°
In the case N = 3n°, the solution is
~ —1 n°
P=F"yyn_4
while in the case IV > 3n° the solution can be given in the form

N -1 n
p= (FT F) FTyNo—l (B35)

The critical cases, of nonidentifiability are those in which the mairix F is not full
rank, so that the matrix FTF is not invertible. These cases occur, for example,
when the input and output data are collected during a period of time in which
the system is at equilibrium (steady state). In fact, in such conditions the first
[second] n° columns of the matrix F are identical because the output [input] does
not vary in time. Another case of nonidentifiability occurs when the initial state
of the unreachable and observable part is zero. In fact, under this circumstance,
the output is not influenced by part d of the system, see Fig. B.16, so that the
coefficients of the characteristic polynomial Ay4(p) are not identifiable. This means
that the ARMA model of the system is not identifiable since N(p) = Ny(p)A4(p)
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gzd D(p) = Ap(p)Aa(p). The previous discussion can be summarized in Theorem

THEOREM 24 (identifiability of ARMA models)

The ARMA model of a proper discrete-time system with known dimension n°® =
np +7q of the observable parts cannot be identified from a series of N input
flnd output values if N < 3n°. On the contrary, if N > 3n° the ARMA model
is uniquely identified, apart from some critical cases (of nonidentifiability).

Oncg the ARMA model has been identified, it is possible to construct a triple
(A,b,c", d), which realizes it. Such a triple is the reconstruction canonical form

00 0 —ae Bre

0 ... 0 —apo_y Bro—1

A, =] 01 .. 0 —am_, b, — Bro—g
00 ... 1 -

. ! B
T=(00 ... 01)

In fact, from Theorem 17, such a system is completely observable, so that it is
compos.ed. of parts b and d, which characterize the ARMA model. If the ARMA
model is in reduced form, that is, if the polynomials

D(p) =p™ +arp™ L+ + ago
N(p) = Bio™ 1 4+ oo

are coprime, the triple (A,, b,, ¢I') is also reachable, namely it is composed of part
(b) only. In contrast, if the ARMA model is not in reduced form, namely, if

D(p) = r(p)d(p)
N(p) = r(p)n{p)

then, the system is composed of a reachable and observable i
part described by the
ARMA model [n(p), d(p)] and of an unreachable and observable part, described

by an AR model r(p), which coincides with the characteristic polynomial A4(p)
of such a part.

The control canonical form

Ac=AT bo=¢c, L =37

c r

obta.inefi by duality from the realization in reconstruction canonical form, is not a
realization of the ARMA model [N (p), D(p)], if such a model is not in reduced
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Figure B.18 Ilustration of the least-square estimation principle.

form. In fact, the system (A, be, c? ) is completely reachable (see Theorem 13) so
that it cannot be composed of parts b and d. Therefore, the ARMA model of the
control canonical form (A, be, ¢l ) is [n(p), d(p)] instead of [N (p), D(p)]. In other
words, the control canonical form realizes the transfer function G(p) = N(p)/D(p)
of the system but not the ARMA model. Obviously, if the system is completely
reachable and observable, the ARMA model is in reduced form and the control
canonical form is one of its realizations.
If the input and output values contain errors, Eq. (B.34) must be replaced by

Fp—yly =€l

where the vector ¢ represents the difference between the output values predicted
by the ARMA model and the measured output values. In Fig. B.I8, the measured
output vector and the subspace Z[F] of the output predicted by the ARMA model
are shown in the space of dimension V —n°. It is then natural to choose the ARMA
model that is, the value p of p, that minimizes the distance between the measured
and the predicted output vectors.

As illustrated in Figure B.18, this amounts to choosing p in such a way that the
vector €7 _, is orthogonal to Z[F]. But, since Z[F]* = N[FT], this is equivalent
to

F T€TJ§/O~1 =
namely,
FT(Fp—yiy 1) =0
from which, assuming that FTF is invertible, it follows that:
p=(FTF) FTy_, (B.36)

which coincides with Eq. (B.35).
The estimation p given by (B.36) is known as the least-square estimation because
it minimizes the sum of the squares of the differences between predictions and actual
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measurements. This estimation, here interpreted in geometrical terms, possesses a
number of peculiar properties for specific statistical characteristics of the input and
output measurement errors. Moreover, formula (B.35) can be fruitfully given in a
recursive form, in such a way that the computation of $ can be updated in real time,
without the need of computing the inverse of a 2n° x 2n°® matrix each time a new
pair of input—output data is available.

B.19 POLES AND ZEROS OF THE TRANSFER FUNCTION

We have already mentioned that the transfer function G(p) of a linear system is,
by definition, the ratio of the two polynomials N(p) and D(p) that identify the
ARMA model of the system

D(p)y(t) = N(p)u(t)

From Theorem 23, we can immediately conclude that G(p) coincides with the
transfer function of the reachable and observable part of the system, that is,

on-23

where Ny, (p) and Ap(p) are the two coprime polynomials characterizing the ARMA
model of the reachable and observable part. The zeros of the polynomials Ny, (-)
and Ay(-) are called, respectively, zeros and poles of the transfer function (or of
the system) and are denoted by z; and p;. The transfer function of a proper system
with a reachable and observable part of dimension n can be written in the following
form:

Brp™ " + ﬂr+1pn—r—1 + G,

Gip) =
®) prtapti e ton

where r > 1 is the so-called relative degree, or in the form

(p - 21)(10 - 22) v (P - Zn—r)
(p—p1)p—p2)...(p—pn)

where p is called transfer constant. Poles and zeros are of paramount importance
in a number of problems in systems and control theory. We shall see in a moment
that it is particularly interesting to know if a continuous [discrete] -time system has
all its poles and zeros with negative real part [modulus < 1]. In other words, we
are interested to know whether the poles and zeros are “stable” or not. In view
of the decomposition theorem, it follows that the poles of the transfer function are
the eigenvalues of the reachable and observable part, so that (see Theorem 22) a
system is externally stable if and only if its poles are stable. Moreover, the output
of a system is bounded for any bounded input if and only if its poles are stable and
the unreachable and observable part d does not exist or is asymptotically or simply
stable. Under these conditions, the solutions of the ARMA model

G(p)=p



280 ELEMENTS OF LINEAR SYSTEMS THEORY

U+ UuUtw Y

Gi(p)

+

1 Gy(p)

Figure B.19 Structure of a system equivalent to a completely reachable and observable
system [G1(p) has no zeros].

Ap(p)Aa(p)y(t) = No(p)Aa(p)ult)

for different initial conditions and for the same bounded input 4(¢), are different
bounded outputs §(t) which do not diverge unlimitatedly one from each other.
Moreover, if the unreachable and observable part is missing or asymptotically stable,
the outputs §(¢) of the system tend toward the same function y(t) which can be
computed with great accuracy for ¢ sufficiently large using the reduced ARMA
model

Ap(p)y(t) = No(p)ult)

To fully understand the role of the zeros in the dynamics of a linear system, it
is necessary to refer to the particular canonical form shown in Fig. B.19. This is
always possible since a completely reachable and observable system (A, b, ¢T) with
n poles and (n — r) zeros, can always be put, by means of an appropriate change
of coordinates z = Tz, in the form reported in Fig. B.19, where the subsystem in
the forward path, has dimension r and has no zeros.

If G1(p) and G2 (p) are the transfer functions of the two subsystems, from the
formula

_ G1(p)
Clp) = 1~ G1(p)Ga(p)

we can conclude that the poles of Ga(p) are the zeros of G(p). Therefore, if
(Ag,ba,ck) is the triple that defines the subsystem in the feedback path, the eigen-
values of A; are the zeros of the system and the free output of the feedback
subsystem, obtained with y(¢) identically zero, is

w(t) = cFet?t2,(0)

If the system in the forward path is initially at rest [#;(0) = 0] and the signal

w(t) is compensated by the input u(¢) = —w(t) , the system in the forward path
is not excited from the outside and remains, consequently, at rest [ie., y(t) = 0).
This means that the output of the system can be identically zero even if its input
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is not. This happens when the initial state is appropriately chosen [z (0) = 0] and
the input u(t) is the output of an autonomous system (A, —, ¢4 ) with eigenvalues
equal to the zeros of the system. In other words, the zeros of a system completely
determine the dynamics of its “hidden” inputs.

Systems with no zeros or with strictly stable zeros are called minimum phase
systems. They have no hidden inputs or hidden inputs that asymptotically tend
to zero at a speed dictated by the “dominant” zero. In contrast, continuous-time
[discrete-time] nonminimum phase systems have zeros with nonnegative real part
[modulus not < 1] and therefore have hidden inputs not tending to zero. The
knowledge of a record of the output of a completely reachable and observable
linear system allows one to reconstruct an input 4(t) of the system, which is the
sum of the true input «(t) and of a hidden input. But if the system is minimum
phase, the hidden input tends to zero as ¢ — oo so that #(t) tends toward the true
input u(t). The reconstruction algorithm is still an ARMA model

Ap(p)y(t) = Nu(p)u(?)

which must be solved with respect to u(t). In the case of a discrete-time system,
this implies the recursive solution of the equation

y(t)+ary(t—1)+- - Fany(t—n) = Fra(t—r)+Brprd(t~r—1)+- - -+ Bpii(t—n)

with respect to 4(t — ). Note that this operation cannot be performed in real time
since the evaluation of 4(t - r) requires the knowledge of y(t). At best, the input
can be reconstructed after r transitions.

Clearly, the problem of the hidden inputs and of the reconstruction of the in-
puts from the outputs is well posed also when the system has an unreachable and
observable part. In this case, taking into account Fig. B.2, one obtains the block
diagram shown in Fig. B.20. ’

Such a diagram shows that the hidden inputs can be divided into two groups:
those “generated” by the zeros of the system and those “generated” by the eigen-
values of the unreachable and observable part [zeros of the polynomial A4(p) 1.
Therefore, the hidden inputs tend to zero, if the system is minimum phase and its
unreachable and observable part is asymptotically stable. In this case, the input can
be reconstructed by solving the nonreduced ARMA model

Ap(p)Ada(p)y(t) = Nu(p)Ada(p)u(t)

with respect to u(t) or, alternatively the reduced ARMA model

Ap(p)y(t) = N (p)u(t)

This section can be summarized by noting that poles and zeros play roles that are
“dual” in some way. In fact, in the long run, the output of a completely reachable
and observable system also can be computed, given its input, with no information on
the initial state provided that the poles of the system are stable (external stability).
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Figure B.20 Block diagram of a system with a nonreduced ARMA model: Aqg(p) is the
characteristic polynomial of the unreachable and observable part and G1(p) has no zeros.

Dually, in the long run, the input of a completely reachable and observable system
can be computed, given its output, with no information on the initial state, provided
that the zeros of the system are stable (minimum phase). In other words, the stability
of the poles allows one to neglect the free motion in the long run, while the stability
of the zeros allows one to neglect the hidden inputs. The reader can easily formulate
these properties for systems with an unreachable and observable part.

B.20 POLES AND ZEROS OF INTERCONNECTED SYSTEMS

As shown in Section B4, the transfer function of two interconnected systems (Figs.
B.3, B4, and B.5) is given by

G(p) = G1(p)Ga(p)
G(p) = G1(p)G2(p)

_ G1(p) : i
G(p) = 7 (0)Calp) (negative) feedback connection

series connection

parallel connection

where G1(p) and G, (p) are the transfer functions of the two subsystems. Apart from
critical cases (related to the nonreachability and nonobservability of the resulting
system), in which the denominator of the transfer function G(p) turns out to be
a polynomial of degree smaller than the sum of the degrees of the denominators
of the two transfer functions G'1(p) and G2(p), we can immediately conclude the
following:

Series. The poles and the zeros of G(p) are the union of those of G1(p) and
Ga(p)-
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Parallel. The poles of G(p) are the union of those of G1(p) and Gy (p).

Feedback. The zeros of G(p) are the union of the zeros of G;(p) and of the
poles of Ga(p).

The computation of poles and zeros of interconnected systems is, therefore, im-
mediate, except for the computation of the zeros of systems connected in parallel
and of the poles of systems connected in feedback. These two cases however, are
equivalent since the zeros of the transfer function

G(p) = G1(p) + G2(p)

of the system in Fig. B.2I(a) coincide with the poles of the transfer function

Gi(p) )
_ Ga(p) _ Gi(p
0= 60 T Cw &)
Ga(p)

of the system in Fig. B.21(b).

Gi(p) o
u 4+ : i\P
U P Y - Gz(p)
+
Gy(p)
(a) (b

Figure B.21 The zeros of system (a) coincide with the poles of system (b).

We can then conclude that there is only one significant problem, namely, the de-
termination of the poles of a system composed of two subsystems connected in
feedback. This is the central problem of classical control theory, mainly focused
on the determination of feedback systems with appropriate dynamic properties as,
for example, external stability.

In applications, it is often important to determine poles and zeros when some
parameter is varied (typically, a design parameter). Though today this can be simply
done by means of specific software, we briefly describe a method called root locus,
which has been often used in the past for the design of control systems, and is of
great value still today for the discussion of the stability of feedback systems.
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Figure B.22 Feedback system.

The root locus is by definition, the locus described in the complex plane by the
poles of the feedback system shown in Fig. B.22 when the transfer constants of
the two subsystems are allowed to vary. It is, therefore, composed of n curves, one
for each pole, called “branches” of the locus.

If the product of the two transfer constants is positive [negative] and assumes all
values, from 0 to co[—oo| we obtain the direct [inverse] locus. When the transfer
constants are related to a design parameter (as it is usually the case) and one wants
to obtain an externally stable system, one must check whether the n segments of the
branches of the locus are “stable” for the feasible values of the design parameters.
This amounts to checking whether the 1 segments of the “locus” are in the left
half-plane [unitary circle] of the complex plane if the system is continuous-time
[discrete-time]. In Fig. B.23, six examples of direct root loci are depicted: poles
and zeros of the two transfer functions G(p) and H(p) are represented by crosses
(x) and circles (o), respectively.

Obviocusly, there is no reason to distinguish the poles [zeros] of G(p) from those
of H(p). In fact, if

H(p ~ 27) (p — 27

Glp) = pe—"——5+ H(p)=pp——5%

®) = P95 =40 I(p - pf")
then the transfer function F(p) of the system is
G
F(p) = (?)

- 1+ G(p)H(p)
and its poles are the roots of the equation
1+G(p)H(p) =0

in which only the product G(p)H (p) appears. Such equation can be fruitfully
written in the form

kI(p — 25)I(p — 27) = ~11(p — p{)I1(p — pi¥) (B.37)

where the parameter k, which is positive in the direct locus ‘and negative in the
inverse one, is the product of the two transfer constants, namely, £ = pgpn. The
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Figure B.23 Root loci of second- and third-order systems: (a) two poles; (b) and {c) two
poles and one zero; (d) three poles; (e) three poles and one zero; (f) three poles and two
Zeros.

loci (a), (b), and (c) of Fig. B.23 refer to a feedback system composed of two
subsystems, which have only two poles, while in cases (d), (¢), and (f) there are
three poles. Consistently, the first three loci are composed of two branches, while
the last three are composed of three branches. If we imagine that we are dealing
with continuous-time systems, we can infer that the feedback system is externally
stable for all values of k in cases a, b and ¢, only for £ < k* in cases d and e
and for k < k* and k > k** in case f. The values k* and k** are very important,
since they mark the transition from stability to instability.

The six loci depicted in Fig. B.23 show some general properties of the root
locus that are worth noting. First of all, the locus is symmetrical with respect to
the real axis. Moreover, each branch starts from a pole [of F(p) or G{p)] since
for & — 0 the roots of (B.37) tend to p{¥ and p. On the other hand, for & — oo,
(n —r) branches tend to the zeros z{” and 2! [see (B.37)] while the remaining r
tend to infinity forming an angle of 27 /7. Finally, all the points of the real axis that
have on their right an odd [even] number of singularities (poles and zeros) belong
to the direct {inverse] locus. All such properties can be easily proved. In contrast,
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other properties as the “rule of the center of mass” are less immediate. Such a rule
states that if the relative degree r is > 2, the sum of the n poles is independent of
k. This can be checked by writing Eq. (B.37) in the form

Ph e et =0

and by noting that 7y;, which is equal to the opposite of the sum of the poles, is
independent of & if » > 2. The consequences of this rule are evident in the loci a
and e in Fig. B.23. In case a, the point in which the two branches collide when &
increases is the central point of the segment connecting the two poles. In case e,
since for & = 0 the sum of the three poles is equal to —6 and for £ — oo one of
the three poles tends to the zero located at —8, the other two poles must have, for
k — oo, real part equal to 1.

All such rules often allows one to discuss qualitatively, but effectively, the ex-
ternal stability of a feedback system when a design parameter is varied. From Fig.
B.21, it is clear that the same rules also allow the discussion of the minimum phase
of systems composed by subsystems connected in parallel.

B.21 IMPULSE RESPONSE

The impulse response of a continuous-time linear system is, as the term itself
suggests, the output of the system corresponding to an impulsive input. In order to
uniquely define the impulse response, one must specify the initial state which, for
simplicity, is assumed to be zero. The impulse response, denoted in the following
by g(t), is then the output of the system

&= Ax + bu

y=cTx
with 2(0) = 0 and u(¢t) = imp ¢.

The impulse response, can often be measured directly in the field or in the
laboratory. For example, Fig. B.24 reports the impulse responses of four systems.
The first concerns the position of a point mass moving along a straight line after it
has been hit by another point mass (impulsive force), the second is the voltage of
an R — C circuit fed by an impulse of current, the third is the flow of a river after
a short but intensive storm in the river basin (impulsive rainfall), and the fourth is
the behavior of the wings of an airplane after an air pocket (impulsive force).

From the Lagrange formula (Theorem 1) it follows that:

t 0+
g(t) = cT/ eAt=pimpede = cTeAt/ imp&déd
0 0
that is,

g(t) = et
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Figure B.24 Four impulse responses: (a) point mass; R — C (b)electrical circuit; (c)
river basin; (d) wings of an airplane.

This means that the impulse response is the free output of the system g(¢) ==
cTeAtz(0) with z(0) = b and this is consistent with the fact that the impulse steers
the state ot the system form 0 to b in a time interval of zero measure.

By recalling that the reachable and observable part of a system (part b) is the
only part determining the output in the case of a zero initial state, one can also
write

g(t) = cFetth,

From the Lagrange formula, it follows also that the forced evolution of a continuous-
time linear system is

o(t) = ¢ / Ay (e)ds = /0 ot - Eyu(€)de

namely, the forced output is the convolution integral of the impulse response and
of the input.
Moreover, it is worth noting that

2
g(t) = cTetthb =T <I+At+A2%+...>b

t2
= cTb+cTAbt + " A% + -+
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so that, recalling the formula for the Taylor expansion of a function g(¢) in a
neighborhood of the origin, we can conclude that

Eg—@ =cTA% i=0,1,2,...
att o

The coefficients
g=c'b go=cTAb g3=cTA%...

are known as Markov coefficients.

Other canonical responses of continuous-time linear systems are the step re-
sponse and the ramp response, which are the output of the system with z(0) = 0
and

u)={; i30 ramp
Since the step function is the integral of the impulse function and the ramp is the
integral of the step, we can conclude that the step response is the integral of the
impulse response and that the ramp response is the integral of the step response.
By using analogous arguments one can define the impulse response of discrete-time
systems, which turn out to be given by

0 t=0
g(t):{ cTAt—lb t>0

From the above definition of Markov coefficients, one can conclude that the im-
pulse response g(t) of a discrete-time system is zero at time zero and equal to the
corresponding Markov coefficients for ¢t > 0, that is,

9(t) = gt

As a useful exercise, the reader is invited to compute the impulse response of the
systems considered in Example 1 (Newton’s law) and in Example 2 (Fibonacci’s
rabbits).

B.22 FREQUENCY RESPONSE

For a large class of continuous-time linear systems, the periodic output correspond-
ing to a sinusoidal input is unique and is actually a sinusoid with the same frequency
as the input. This property directly leads to the definition of frequency response
and to the possibility of determining the transfer function by means of simple ex-
periments.

As for the existence and uniqueness of the periodic output, Theorem 25 holds.
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THEOREM 25 (existence and uniqueness of the periodic regime)

In a continuous-time linear system (A, b, ¢T) with no eigenvalues with zero real
part, one and only one periodic output of period T, say yr(-), is associated to
each periodic input function ur(-) of period T. Moreover, if the observable
part is asymptotically stable, the output y(t) corresponding to the input ur(t)
tends asymptotically to yr(t), for any initial state z(0) of the system.

To verify that the theorem cannot be extended to systems with eigenvalues with
zero real part (nonhyperbolic systems) it is sufficient to consider the case of an
integrator & = u,y = 2. In fact, in such a system, the input

ug(t) = U cos(2n/T)t
gives rise to an infinite number of periodic outputs
yr(t) = z(0) + (UT/2n) sin(2m/T)t

parameterized in the initial state z(0) of the system.
Among all periodic input functions u(-), of particular interest is the sinusoidal
function

Usin(2n/T)t = Usinwt

since it is known that, under very general conditions (see Section B.23), any periodic
function ur(-) of period T' can be expanded in Fourier series and expressed as
an infinite linear combination of sinusoids and cosinusoids of angular frequency
n(27/T), n being any nonnegative integer. In fact, a periodic function of period T
can be written as

> 2mt : 2t
up(t) = ap + ; [an cos (n——f-> + b, sin <n—f-)]

where

-T/2
9 T/2
On = = up(t) cos (n——) dt
—-T/2
2 [T/ t
bp = — up(t) sin (n——) dt
T J_r/2

Therefore, the periodic function yr(-) corresponding to the periodic input ur(-) can
be computed by first determining the components of the Fourier series of ur(-) and
then by summing up all the corresponding output periodic functions (superposition
principle). Moreover, the relevance of the sinusoidal regime is motivated by the
following result:
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THEOREM 26 (frequency response)

Continuous-time linear systems (4, b, c¢T} with no eigenvalues with zero real
part have one and only one sinusoidal output

2
yr(t) =Y sin (%t + go)

for any sinusoidal input
27
t) =Usin—t
ur(t) sin -
Moreover, Y is linear in U and ¢ depends only on w = ZT", that is,

Y = RW)U = o)

Theorem 26 states that a system in sinusoidal regime has an output sinusoid
of amplitude R(w)U shifted with respect to the input sinusoid of an angle @(w).
Therefore, the computation of the periodic function yr(-) corresponding to a peri-
odic input ur(-) is straightforward once the two functions R(-) and (-) are known.
This is why this pair of functions is called frequency response.

The frequency response of a system can be measured by means of simple ex-
periments if the observable part of the system is asymptotically stable. In fact, if
one applies to a system of this kind a sinusoidal input of amplitude U and angular
frequency w, after a sufficiently long time interval the output of the system is in
practice a sinusoid of amplitude R(w)U and phase ¢(w), no matter what the initial
conditions of the system are. Thus, R(w) is simply the ratio of the amplitudes
of the output and input sinusoids while ¢(w) is the phase shift between the two
sinusoids.

In contrast, if the observable part of the system is not asymptotically stable, it is
not possible to experimentally determine the frequency response of the system since
the output does not tend toward a sinusoid for a generic initial state. Nevertheless,
this fact does not imply that the frequency response [R(w), ¢(w)] cannot be defined;
indeed, the problem of the definition of a quantity is different from the problem of
its determination.

The frequency response of a system can be graphically represented in two ways:
by means of the Cartesian plots of the functions R(-) and () or by means of the
polar plot (called Nyquist plot) representing the function R(-)e*#().

Typical Cartesian plots of the function R(-) are depicted in Fig. B.25. In certain
ranges of the angular frequency w the function R(w) is almost zero, which means
that the input sinusoid is very strongly attenuated. Thus, for example, the system
in Fig. B.25(a) attenuates all the sinusoids with angular frequency > wy while
the sinusoids with w < wg are not attenuated. A system of this kind is called a
low-pass filter and the interval [0, wp] is called a bandwidth [since it is not possible

S R B S LA o, 5 e S0
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Figure B.25 Typical examples of frequency responses: (a) low-pass; (b) band-pass; (c)
stop band.

that R(w) = 1 for w < wy and R(w) = 0 for w > wp, the bandwidth of the system
has to be defined appropriately].

On the other hand, the system with R(-) as in Fig. B.25(b), attenuates the
sinusoids with angular frequency w < w; and those with w < wa, and is therefore
called a band-pass filter. For the opposite reason, the system with R(-) as in Fig.
B.25(c) is called stop band.

Limiting cases of particular relevance can be obtained by letting the bandwidth of
a band-pass or stop-band system go to zero. By doing so one obtains systems called,
respectively, resonant filters and notch filters, which are sensitive or insensitive only
to a very specific angular frequency.

Obviously, not only the function R(-) is of interest since the function ()
also contributes to define the sinusoidal regime. In fact, the frequency response
[R(w), p(w)] matters. As an example, consider a communication system which,
ideally, should be able to reproduce at the output a perfect copy of the input, obvi-
ously with a certain delay T needed to transfer the information from the input to the
output. Thus, a sinusoidal input U sinwt must produce a sinusoid U sin w(t ~7)
at the output, and this must hold for any angular frequency w. In other words, the
ideal communication system is a pure delay system characterized by R(w) =1 and
¢(w) = —wr, as shown in Fig. B.26.

A pure delay system cannot be realized by a finite-dimensional linear system
(4,5, cT), so that communication systems are often designed by allowing a certain
degree of distortion between input and output, that is, by approximating the shape
of the functions R(-) and ¢(-) in Fig. B.26 in a suitable range of the angular
frequency.

So far, we have shown that the frequency response [R(-), ¢(-)] enables one to
rapidly compute the periodic regime of a linear system and its filtering properties.
We have also shown how the frequency response can be experimentally measured
if the observable part of the system is asymptotically stable. A third very important
property is the following connection (Theorem 27) between frequency response and
transfer function.
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Figure B.26 Frequency response of an ideal communication system.

THEOREM 27 (frequency response and transfer function)

The frequency response [R(w), p(w)] of a continuous-time linear system is
uniquely determined by its transfer function G(s). More precisely, R(w) and
¢(w) are, respectively, the modulus and the phase of the complex number
G(iw), that is, :

G(iw) = R(w)e) (B.38)

The proof of Theorem 27 can be obtained by noting that the sinusoids uz(t) =
U sinwt and yr(t) = R(w)U sin(wt+p(w)) with R(w) and ¢(w) given by (B.38),
satisfy the differential equation (ARMA model)

d(s)y(t) = n(s)u(t)

where G(s) = n(s)/d(s). For example, if the system is the first-order system
T = ax + bu with y = z, the transfer function is

and the ARMA model is
y—ay=bu

while the frequency response is

[ b w
R(w) = m go(w) = arctg—(;

It is therefore immediate to check (usirig a bit of trigonometry) that the two sinusoids
up(t) = Usinwt

y7 = R(w)U sin{wt + ¢(w))
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satisfy (B.22).

Theorem 27 is very important, since it allows one to compute the frequency
response of a linear system from the triple (A, b, c”), from the ARMA model, or
from the transfer function G(s). Moreover, it is the basis for a relatively simple
solution of the identification problem (see Section B.18). In fact, if we want to
model a physical system we must perform some tests on the system and, on the
basis of the results, determine, for example, the triple (A4, b, ¢7). Such tests, must be
measures of pairs of input and output functions, for example, the impulse response
or the frequency response. From these functions, we must compute the transfer
function of the system and, then, realize the triple (A,b,cT) (see Section B.3 ).
Among the tests that can be performed on the system, the frequency response is
perhaps the most convenient. In fact, in order to measure the frequency response
of an asymptotically stable system, it is not necessary that the initial state be zero,
while this is necessary when dealing with the impulse or the step response of the
system. Moreover, the frequency response can be measured by applying at the input
of the system sinusoids of relatively small amplitude in such a way that nonlinear
effects are negligible. Obviously, this is not the case when one wants to measure
the impulse response. Finally, if the long-term response of an asymptotically stable
system to a sinusoid is not sinusoidal, it is possible to conclude that the system
is nonlinear, a conclusion, that can be hardly obtained by examining the impulse
response since it is extremely difficult to check whether a function is a linear
combination of exponentials or not.

B.23 FOURIER TRANSFORM

Before introducing the notions of Fourier series and Fourier transform, we give
some definitions that will be used in the sequel.

DEFINITION 4 (functions with bounded variation)

A real function f(-) has a bounded variation in the closed interval [a,b] if
there exists a constant K such that for any finite set of points ¢g,t1,ta,...,t,
partitioning the interval [a, b](a =ty < #; <t2 < ... <t, = b) one has

S F ) — F(t6)] < K
k=0

If a real function f(-) has a bounded variation in any closed interval, we say
it is of bounded variation. Moreover, a complex function f(-) is of bounded
variation if its real and imaginary parts have bounded variations.

The functions with bounded variation enjoy a number of properties that are now
reported without proof.
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THEOREM 28 (properties of functions with bounded variation)

A real function f(-) has a bounded variation in the interval [a, b] if and only
if it is the difference between two nondecreasing functions. A function f(-)
with bounded variation in the interval [a, b} is bounded in the same interval. If
a function f(-) has bounded variation in an interval [a,b], the discontinuities
of the function in such interval are numerable. If a function f(-) has bounded
variation in an interval [a,b] then, for any ¢ € (a, b) there exist the right and
left limits, that is,

fE7) =lim f(t—e) f(t7) =lim f(t+¢e) €>0

Moreover, for t = a there exists the right limit and for ¢ = b the left one.

We can now state the first important result concerning the Fourier series. From
an intuitive point of view, the result says that, under very general assumptions,
a periodic function of period T can be represented as the linear combination of
sinusoids of angular frequency equal to multiples of the angular frequency 27 /T
The proof of this result is not reported because it is not easy.

THEOREM 29 (Fourier series)

If f(-) is a periodic function of period T' with bounded variation, then for all
t one has
N s 27k ].
Jim 7 fue = S(5() + () (B.39)
e k=-—-N .
where '
1 T/2 ;27K
fr= —f/ f®e Tt k=0,F1,7F2,... (B.40)
—T/2

Obviously, if the function f(-) is continuous at time t, Eq. (B.39) simplifies and
becomes

N
f) = lim Y7 et (B41)
T k=N

By recalling that

]

e’ =cos@ +1isind

From (B.40) and (B.41) one easily obtains

N
1 . 2k . [ 27k
flt)y= 560 + A}l_rgo k_g_N {ak cos (Tt) + by sin (Tt> } (B.42)
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where

2 /Tﬂ (m;)
g = — flt)cos{ ——t | dt

T e (® T

2 [T/2 2rk
bkz_/ ftsin(—t)dt

T J 7/ ® T

Expression (B.42) is the most popular formulation of the Fourier series, since it
shows explicitly that a periodic function f(-) is the linear combination of sinusoids
and cosinusoids. Moreover, if

T/2
/ F(@&)Pdt < oo
—-T/2

it follows that
2
dt =0

N

> R - f)

k=—N

T/2
lim
N-—co —T/2

where f is given by (B.40).

Since any function f(-) can be considered as a periodic function of a infinite
period, from the previous results it follows that any function f(-) is the sum of a
continuum of sinusoids and cosinusoids, since the difference 27 /7" between two
different angular velocities tends to zero whenever T tends to infinity. This is the
basic idea of the so-called Fourier transform, which is specified below.

Let f(-) be a function with bounded variation over R and suppose that such a
function satisfies the inequality

| istoa < oo

-0

Denote with fz(-) the periodic function of period T that coincides with f(-) in
the interval [~T'/2,T/2). From the previous results, it follows that f1(-) can be
expanded in Fourier series, namely,

N

. 1 o —j2nk j 21k 1

Jim [‘f/ Fr(t)e™F tdt} et = '2‘(fT(t+) +/7(t7)) (B43)
k=—N e

Since, by definition, fr(-) and f(-) coincide in the interval [—-T/2, T/2), the rela-

tionship (B.43) can also be written with f(t) instead of fr(t) provided t belongs

to the interval [-T"/2,T/2). By setting

T/2 ‘
Fr(iw) = /_ S
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from (B.40) with T — oo one obtains
et ; 1

o | Flw)eido =3¢ + 1) (8.4

2T J_o 2
and

F(iw) = / ft)e™tdt = Jin Fr(iw)
The function F'(-) is called a Fourier transform or Fourier integral of the function
F()-
B.24 LAPLACE TRANSFORM

Suppose that a function f(-) has bounded variation in any closed interval contained
in [0, 00) and that there exists a constant ¢ < oo such that

/ Z fB)letdt < 00

-0

Then, consider, the following function F'(-)

Flo +iw) = / ft)e et (B.45)
0
and note that
R .
Flo+iw) = / e~ 1% step(£)e " £(£))dt
0
which means that the function F(-) is the Fourier transform of the function
step(t)e™ " f(t)
Therefore, from (B.44) it follows that

—;—f(()-*_) — 5]_;; [_Z F(a+iw)dw

and

3+ H) =g [ Flo iwpe i

for £ > 0. If we denote the complex variable by s (i.e., s = 0 + iw) Eq. (B.45)
becomes i

F(s) = /0 st p(e)at ' (B.46)
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The function F(-), often denoted by L[f(-)], is called a Laplace transform of the
function f(-). It is a complex valued function defined on the domain Re(s) > oy,
where 0 is the smallest real number such that ¢ < o implies

[s.o]
/ I (H)le=tdt < oo
The Laplace transformation f(-) ~— F(.), defined by (B.46), has a number of

properties. First of all, it is a linear transformation since

Llafi(-) + Bf2()] = aL[ ()] + BL{f2()]

Moreover, the Laplace transform F'(-) of any function f(-) is an analytical function
in the domain Re(s) > g . This implies that the function F(-) can often be
extended to the whole complex plane [i.e., there exists a unique function coinciding
with F(-) for Re(s) > o but defined over the whole complex plane and analytical
anywhere, apart from a certain number of isolated singularity points]. For example,
if f(t) =¢€’, 0 <t< oo wehave

e 1
Lif()] = / e'e™tdt = —— Re(s) > 1
o —
and the function 1/ (s — 1) is analytical anywhere apart from the singular point
s=1
Other important properties of the Laplace transform are those concerning in-

tegration and differentiation of a function f(-). In fact, the following relations
hold:

L[ ] = Latso
L [%f(-)} = sL[f(] - £(0)

Finally, the product of two transformed functions corresponds, in the time domain, to
the operation called convolution, that is, if F'(-) and G(-) are the Laplace transforms
of two functions f(-) and g(-) , the inverse transform of

H(:)=F()G()
is
h(t) =/0 F(t—T)g(r)dr 0<1t< oo

In the following table, we report some Laplace transforms F'(s) of functions f (t):
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f(®) £(s)
impt 1
stept %
rampt —813
et 1
s—a
sinwt 52 _L:wz
coswt ;—5{—;'2-
ft-7) eTF(s)
t" n>0 ;7?4".‘1'

B.25 Z-TRANSFORM

Consider a function f(-) defined on the nonnegative integers, that is,
f(-) 1 t— f(t) t= nonnegative integer
The Zeta-transform of such a function, denoted by
F()=2[f()]
is simply given by the series

F()izm F(2) = fO0)+ f()z7" + f(2)272 + - (B.A7)

Obviously, this expression makes sense if the series converges in the neighbor-
hood of the improper point 271 = 0, where it clearly converges. Suppose now that
f(t) does not increase with ¢ more rapidly than a geometric series. Then, | f(t)|!/*
tends to one or more positive limits, the largest being denoted by R., that is,

tll?& !f(t”l/t = R,

It is easy to show that the series
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F(z2)=3 f(t)=""

=0
converges absolutely for all complex z satisfying the relationship
|z > R,

and, for this reason, R, is called the convergence radius.
The transformation operator f(-) — F(-) is obviously linear, since

Zlafi() + B0 = aZLAi()] + BZ[f2())

Theorems complétely analogous to those given for the Laplace transform can be
proved for the Z-transform. By denoting f~(-) as the function obtained from f ()
after a backward time shift, that s,

0 fort=20
)=
flt—=1) fort>1
the following holds:
ZIf~(N=2""2[f()]
while, if f*(-) is the function obtained from f(-) after a forward time shift, that is,
)= f(t+1) fort >0
the following holds:
2O = 22[f()] - 2£(0)

The simplest way to find analytical expressions of the Z-transform is to determine
the sum of the series (B.47). Thus, for example, if

fy=at t>0
we have
[e.0] fo o]
F(z)= Zatz‘t = Z(az“l)t =(1—az 1!
t=0 t=0

for [z| > |a| and the same formula holds if a is replaced by a square matrix 4 and
1 by the identity matrix 7. Other Z-transforms are reported in the table below.
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ft) F(z)
1 z—1
! (-1?
2(z+1
a éiﬁ
3 2(2% + 4z + 1)
(z—1)*

B.26 LAPLACE AND Z-TRANSFORMS ANDV‘TRANSFER FUNCTIONS

Recall that the transfer function G(p) of a linear system described by an ARMA
model

D(p)y(t) = N(p)u(t)

has been defined (see Section B.2) as the ratio of the two polynomials N (p) and
D(p), that is,

N(p)
G(p) = Do)

Moreover, if the system is proper, the transfer function can be computed using the
formula [see (B.13)]

G(p) =" (pl = A)7'b

Thus, the transfer function G{p) is the (Laplace and Z-) transform of the impulse
response. In fact, in a continuous-time system, the Laplace transform of the impulse
response is

Lig(t)] = L[cTeb] = cTL{e?*]b = cT(sI — A)™'b

and therefore coincides with (B.13). An analogous check is possible for discrete-
time systems.

301

If we take the above discussion into account, it is straightforward to see that the
transfer function can also be written in the form

G@=Z§
=1

where g; = cT A*"'b are the Markov coefficients. In fact, for discrete-time systems
(see Section B.21) we have

0 fort=0
g(t) =
g fort>1

so that the Z-transform of g(t) is (see Section B.25)

Glz) =gz + oz + g3z 3 4 ...
In an analogous way, for continuous-time systems

t2
9(t) = g1 +gat + gagy + -+
so that, recalling that the Laplace transform of ¢" is (n!/s™*1), one obtains
G(s) = Llg@)] = 2+ Z+ L 4.
s 2 s






